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Preface 

The modern view of physical reality is based on the theory of relativity, the related 
standard cosmology model, and quantum mechanics. The development of these theories 
was triggered by observations on the velocity and emission/absorption properties of light 
in late the 19th and early 20th centuries. Theories have attained a high degree of perfection 
during the last 100 years. When assessed in the context of the huge progress in the 20th 
century, they have been exceedingly successful; not only in increasing our knowledge and 
understanding of nature but also in bringing the knowledge into practice in technological 
achievements — in applications ranging from nanostructures to nuclear energy and space 
travel. 

In spite of their significant successes, there has also been continuing criticism of the 
theories since their introduction. The theory of relativity raised a lot of confusion not 
least by redefining the concepts of time and distance, the basic coordinate quantities for 
human conception. This was quite a shock to the safe and well-ordered Newtonian world 
which had governed scientific thinking for more than two hundred years. Another shock 
came with the abstraction related to quantum mechanics — particles and waves were in-
terrelated, deterministic preciseness was challenged by stochasticity and probabilities, and 
continuity was replaced by discrete states. As a consequence, nature was no longer ex-
pected to be consistent with human logic; it is not unusual that a lecturer in physics starts 
his talk by advising the audience not to try to “understand” nature. 

In a philosophical sense, neglecting the demand of human comprehension is some-
what alarming, since it is a primary challenge and purpose of a scientific theory to make 
nature understandable. It is easier to verify the merits of a scientific theory through its 
capability of describing and predicting observable phenomena, and that is what the pre-
sent theories do well in most cases. 

As a mathematical description of observable physical phenomena, a scientific theory 
need not be based on physical assumptions. The Ptolemy sky was based on a direct de-
scription of observations as seen from the Earth. It related the motions of planets to the 
motion of the Sun across the sky without any physical law, other than continuity, behind 
the motions. Kepler’s laws which still form the basis of celestial mechanics were originally 
purely mathematical formulations of the observations made by the Danish astronomer 
Tycho Brahe. Several decades later Newton’s laws of motion and the formulation of grav-
itational force revealed the physical meaning of Kepler’s laws which formed the basis of 
celestial mechanics for the succeeding centuries. 

Newtonian space does not recognize limits to physical quantities. Newtonian space is 
Euclidean to infinity, and velocities in space grow linearly as long as there is a constant 
force acting on an object. As realized in the late 19th century, the velocity of accelerated 
objects does not grow linearly but saturates to the velocity of light. The theory of relativi-
ty describes the finiteness of velocities by linking time to space in four-dimensional 
spacetime and by postulating the velocity of light to be a natural constant and invariant to 
all observers. An observer in relativistic space sees a time interval in an object in relative 
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motion approach infinity so that the velocity of light is never exceeded. The dilated flow 
of time is also used as the explanation of the observed slower frequency of clocks moving 
relative to the observer or at a lower gravitational potential than the observer. 

Authorized by the relativity principle, the theory of relativity ignores the effects of the 
space around the observer; an observer studying a particle accelerated in a laboratory on 
the Earth is subject to the rotation of the Earth and the orbital motion around the Sun, at 
a periodically changing velocity and gravitational potential due to the eccentricity of the 
orbit. Further, the whole solar system is in motion and in gravitational interaction in the 
Milky Way galaxy that interacts with neighboring galaxies as a part of the cosmological 
structure of the universe.  

The Dynamic Universe theory presented in this book is a holistic approach to the uni-
verse and interactions in space. The energy structure of space is described as a system of 
nested energy frames starting from hypothetical homogeneous space as the universal 
frame of reference to all local frames in space. In DU space, everything is interconnected; 
the energy available for running a physical process on the Earth is not only affected by 
the local motion and gravitation but also the motion and gravitational state of the Earth 
in its parent frames. Relativity in Dynamic Universe theory is primarily the relativity of 
the local to the whole rather than relativity between the observer and an object.  

The whole is not composed as a sum of elementary units, but the multiplicity of elementary units 
emerges as diversification of the whole. There are no independent objects in space — everything is linked to 
the rest of space and thereby to each other. 

Although the Dynamic Universe theory means a full replacement of special and general relativity, it 
had not been found without relativity theory. All key elements in the DU can be found in special and 
general relativity – once we replace the time-like fourth dimension with the fourth dimension of a metric 
nature and adopt a holistic perspective to space as the whole.  

In the DU, space is postulated as a three-dimensional structure closed through a 
fourth dimension, like the 3-dimensional surface of a 4-dimensional sphere – following 
Einstein’s original view of the cosmological structure of space in general relativity. Unlike 
the time-like fourth dimension of the relativity theory, the metric fourth dimension of the 
DU, the direction of the 4-radius of the structure, allows contraction and expansion of 
space like a spherical pendulum in the fourth dimension. Spherically closed space does 
not need an energizing quantum jump or Big Bang; space has gained its energy of motion 
against the release of its gravitational energy in a contraction phase and pays it back to 
gravitational energy in the ongoing expansion phase. As observers in space, we observe 
the energy of motion of space in the fourth dimension as the rest energy of matter. Any 
motion in 3D space is associated with the motion of space in the fourth dimension. As 
shown by the detailed energy bookkeeping, any momentum built up in a space direction 
reduces the momentum in the fourth dimension. The relativistic mass increase taught by 
special relativity is not a consequence of velocity, but the energy input needed to build up 
the kinetic energy. In free fall in a local gravitational frame, the kinetic energy is built up 
against the reduced rest energy via tilting of local space; there is no mass increase associ-
ated with the velocity of free fall which means canceling of the equivalence principle be-
hind general relativity.  
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Due to the kinematic approach, special relativity discloses the increase of the inertial mass in motion 
but is blind to the associated decrease of the rest mass which is observed, e.g., as the reduced frequency of 
atomic clocks in motion; general relativity discloses the tilting of space near mass centers but is blind to the 
associated reduction of the rest energy resulting, e.g., in the reduced frequency of atomic clocks near mass 
centers.  

 
In DU space, the velocity of light is not constant but fixed to the velocity of space in 

the local fourth dimension. All local structures in DU space are linked to the rest of 
space. Unlike in GR space, gravitationally bound local structures like galaxies and plane-
tary systems expand in direct proportion to the expansion of space. About 2.8 cm of the 
3.8 cm annual increase in the Earth-to-Moon distance comes from the expansion of 
space and only one centimeter from tidal interactions. Four billion years ago the solar 
luminosity was about 25% lower than it is today, which makes it very difficult to explain 
the geological history of the Earth and the free water on early Mars if the planets had 
been at their present distances from the Sun as taught by general relativity. According to 
the DU, 4 billion years ago planets were about 30% closer to the Sun, which overcom-
pensates the lower luminosity of the Sun and offers a natural explanation to the ancient 
warm oceans on Earth and liquid water on Mars. 

The expansion of DU space occurs with the energies of motion and gravitation in bal-
ance. Such a condition corresponds to the “flat space” condition in the GR framework. 
For matching cosmological predictions with observations, the flat space condition in GR 
space is associated with a remarkable amount of “dark energy” with gravitational push 
instead of attraction. In DU space, a precise match between predictions and observations 
is obtained without dark energy or any other additional parameters.  

The zero-energy approach of the Dynamic Universe allows the derivation of local and 
cosmological predictions with a minimum number of postulates – by honoring universal 
time and distance as the natural coordinate quantities for human comprehension.  

Philosophically, the relativity of observations is an indication that something in space 
is finite. In the kinematic approach of the relativity theory, finiteness is fixed to the veloc-
ity of light – in the dynamic approach of the DU, the finiteness of the velocity of light is a 
consequence of the conservation of energy, or more fundamentally, the balance of the 
energies of motion and gravitation in space. The velocity of light and several “natural 
constants” are observed as constant because the measuring instruments are subject to the 
same energy balance as the quantities measured. The late Finnish professor Raimo Lehti 
called this “the conspiracy of the laws of nature”. 

As a basic principle of scientific thinking, the reality behind natural phenomena is in-
dependent of the models by which we describe them. The best a scientific model can give 
is a description that makes the reality understandable. The model should rely on sound 
basic assumptions and inherently coherent logic, and, specifically in physics and cosmolo-
gy, give precise predictions to phenomena observed and to be observed. 

We are not free to choose the laws of nature, but we have considerable freedom in 
choosing the coordinate quantities used in the models. Time and distance are the most 
fundamental coordinate quantities. For human perception and logic, time and distance 
should be universal for all physical phenomena described.  
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The origin of the Dynamic Universe concept lies in the continuing interest I have had in the basic laws 
of nature and human comprehension of reality since my student time in the 1960s. I recognize my friend 
and former colleague Heikki Kanerva as an important early inspirer in the thinking that paved the way 
for the Dynamic Universe theory. After many years of maturing, the active development of the theory was 
triggered by a stimulus from my late colleague Jaakko Kajamaa in the mid-90s. I express my sincere grat-
itude to my early inspirers.  

 
The breakthrough in the development of the Dynamic Universe concept occurred in 

1995 once I replaced the time-like fourth dimension with the fourth dimension of a met-
ric nature – thereby revealing the physical meaning of the quantity mc, the rest momen-
tum, the momentum of mass m in a fourth dimension, perpendicular to the three spatial 
directions. Momentum and the related energy of motion against the energy of gravitation 
in spherically closed space showed the dynamics of space as that of a spherical pendulum 
in the fourth dimension — showing the buildup and release of the rest energy of matter 
as a continuous process in contraction and expansion periods of the structure. In the DU 
framework, energizing of space did not happen in a mysterious quantum fluctuation or 
Big Bang. The energy buildup and release of space is described as a continuous contrac-
tion–expansion process. Mass can be understood as a wavelike substance for the expres-
sion of energy. By assuming conservation of the total energy in interactions in space, the 
overall energy structure of space can be described as a system of nested energy frames, 
proceeding from large-scale gravitational structures down to atoms and elementary parti-
cles.  

The development of the Dynamic Universe model has been documented in annually 
updated monographs titled “The Dynamic Universe” in 1996-99, “The Dynamic Universe, A 
New Perspective on Space and Relativity” in 2000-2003, “Theoretical Bases of the Dynamic Universe” 
in 2004, and “The Dynamic Universe, Toward a Unified Picture of Physical Reality”, editions 1, 2, 
and 3 in 2009-2012. The first peer-reviewed papers on the Dynamic Universe were pub-
lished in Apeiron in 2001. For several years the main channel for scientific discussions 
and publications was the PIRT (Physical Interpretations of Relativity Theory) conference, 
biannually organized in London and occasionally in Moscow, Calcutta, and Budapest. I 
would like to express my respect to the organizers of PIRT for keeping up critical discus-
sion on the basis of physics and pass my sincere gratitude to Michael Duffy, Peter Row-
lands, and many conference participants. At the national level, The Finnish Society for 
Natural Philosophy has organized seminars and lectures on the Dynamic Universe con-
cept. I express my gratitude to the Society and many members of the Society for the en-
couragement and inspiring discussions. I am exceedingly grateful to the co-founders of 
the Physics Foundations Society, Ari Lehto, Heikki Sipilä, and Tarja Kallio-Tamminen for 
their initiatives in promoting the search for the fundamentals of physics and the essence 
of the philosophy of science – complemented by Avril Styrman with his doctoral thesis 
Economical Unification as a Method of Philosophical Analysis, presented at the University of 
Helsinki in 2016. I also like to express my sincere thanks to Robert Day for his early anal-
ysis of the DU supernova predictions and his assistance with my publications, and Mervi 
Hyvönen-Dabek and Jan Dabek for polishing my English language. My many good 
friends and colleagues are thanked for their encouragement during the years of my trea-
tise. The unfailing support of my wife Soilikki and my daughter Silja and her family has 
been of special importance, and I am deeply grateful to them. 
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The 4th edition is restructured; Chapter 1, Introduction, gives an overview of the theo-
ry and presents important theoretical outcomes and experimental results with minimal 
mathematics. Chapters 2 to 6 document the formal derivation of the theory. As an addi-
tion to the earlier editions, Section 4.2.9 Orbital decay has been added. 

In the Dynamic Universe, several physical quantities get meanings and notations dif-
ferent from those in traditional theories. For example, mass in the DU is not a form or 
expression of energy like in the theory of relativity, but the wavelike substance for the ex-
pression of energy. Mass, momentum, and energy are described as complex quantities. 
For example, the real component of the complex momentum is the momentum we ob-
serve in space; the imaginary part of the momentum is the rest momentum due to the 
expansion of space in the fourth dimension. The imaginary part of momentum is not 
recognized in current theories because of the time-like fourth dimension and the postu-
lated constancy of the velocity of light and rest mass. The modulus of the complex energy 
is equal to the concept of energy as a scalar quantity used in the traditional formalism.  

  
 



 

 



 

 

1. Introduction to the Dynamic Universe  

A new theory is necessary when existing theories grow in complexity, fail in producing predictions 
matching observations or fail in producing an understandable picture of reality. The theory of relativity has 
succeeded well in producing mathematical descriptions for the observations but failed in creating a compre-
hensive picture of reality.  

The theory of relativity continues the Galilean–Newtonean tradition; it is built on kinematics and 
metrics on a local basis and relies on the relativity and equivalence principles. As additional bases, the 
theory of relativity needs the assumption of the constancy of the velocity of light and coordinate transfor-
mations for moving from one frame of reference to another. The Friedmann-Lemaître-Robertson-Walker 
(FLRW) cosmology relies on the general theory of relativity and the cosmological principle. Quantum 
mechanics completes the theory of relativity in the description of phenomena on the micro-scale. QM 
breaks the deterministic nature of the classical theories and brings up the concept of discrete states and 
probabilities. 

 
The Dynamic Universe theory means a major change in the paradigm. DU replaces 

the relativity principle and the associated concept of inertial frames of reference with a 
system of nested energy frames that relates any energy state in space to the state of rest in 
hypothetical homogeneous space. Instead of expressing relativity in terms of coordinate 
transformations, relativity is expressed in terms of locally available energy in the DU. The 
concept of time-like fourth dimension is replaced with the metric fourth dimension. Time 
is a universal scalar allowing motion equally in the three space directions – and in the 
fourth dimension, as the expansion of the spherically closed space. 

 
The Introduction to the Dynamic Universe is presented in four chapters: 
 
1.1 “Basic concepts” introduces the basic structure of the theory and the central definitions and nota-

tions needed. 

1.2 “Buildup of energy in space” introduces the contraction-expansion process building up the rest 
energy of matter as the primary energy available for the buildup of local energy structures, the 
system of nested energy frames in space. Starting from the quantum mechanical solution of atom-
ic structures, the frequency of atomic clocks is linked to the local state of gravitation and motion. 
The properties of the velocity of light are derived from the overall energy balance in space.  

1.3 “Cosmological considerations” gives an overview of the basis of the Friedmann-Lemaître-
Robertson-Walker (FLRW) cosmology and introduces the reconsiderations needed in the DU 
framework. DU predictions for key observables are introduced with a comparison to observa-
tions. The linkage between GR space and DU space is discussed.  

1.4 “The summary" compares the theory structure and the hierarchy of physical quantities in the 
DU and contemporary physics.    
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1.1 Basic concepts 

The first Chapter of Copernicus’ De Revolutionibus (1543), is titled The Universe is Spheri-
cal: “First of all, we must note that the universe is spherical. The reason is either that, of all forms, the 
sphere is the most perfect, needing no joint and being a complete whole, which can be neither increased nor 
diminished; or that it is the most capacious of figures, best suited to enclose and retain all things; or even 
that all the separate parts of the universe, I mean the sun, moon, planets, and stars, are seen to be of this 
shape; or that wholes strive to be circumscribed by this boundary, as is apparent in drops of water and 
other fluid bodies when they seek to be self-contained. Hence no one will question the attribution of this 
form to the divine bodies”. 

The Copernican system allowed dynamic analyses of physical interactions in the plane-
tary system and created the basis for mathematical physics. The Dynamic Universe takes 
the next step: Not only the planetary system but the whole three-dimensional space is 
described as a spherically closed entity allowing a dynamic analysis linking all local struc-
tures and phenomena to space as the whole.  

1.1.1 Space as a spherically closed entity 

In the DU, space is studied as a closed energy system, the three-dimensional “surface” 
of a four-dimensional sphere a. Space as the 3D surface of a 4D sphere is quite an old 
concept for describing space as a closed but endless entity. The concept of a 4D sphere is 
based on differential geometry developed in the 19th century by Ludwig Schläfli, Arthur 
Cayley, and Bernhard Riemann. Space as the 3D surface of a 4D sphere was Einstein’s 
original view of the cosmological picture of general relativity in 1917 1. Gravitation in 
spherically closed space tends to shrink the structure leading to dynamic space; dynamic 
space requires metric fourth dimension, which did not fit the concept of four-
dimensional spacetime of the theory of relativity. To prevent the dynamics of spherically 
closed space Einstein completed the theory with the famous cosmological constant which 
was recently reawakened as the “dark energy” needed to match cosmological predictions 
to observations. 

In his lectures on gravitation in early 1960’s Richard Feynman2 returned to the idea of 
spherically closed space: 

“...One intriguing suggestion is that the universe has a structure analogous to that of a spherical sur-
face. If we move in any direction on such a surface, we never meet a boundary or end, yet the surface is 
bounded and finite. It might be that our three-dimensional space is such a thing, a tridimensional surface 
of a four sphere. The arrangement and distribution of galaxies in the world that we see would then be 
something analogous to a distribution of spots on a spherical ball.” 

In the same lectures3 Feynman also pondered the equality of the rest energy and gravi-
tational energy in space: 

a In mathematics, the 3-dimensional surface of a 4-dimensional sphere is referred to as 3-sphere. The terms 
3D surface of a 4D sphere are used to avoid the confusion. 
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 “If now we compare the total gravitational energy Eg= GM 2
tot/R to the total rest energy of the uni-

verse, Erest = Mtot c 2, lo and behold, we get the amazing result that GM 2
tot/R = Mtot c 2, so that the 

total energy of the universe is zero. — It is exciting to think that it costs nothing to create a new particle, 
since we can create it at the center of the universe where it will have a negative gravitational energy equal to 
Mtot c 2. — Why this should be so is one of the great mysteries — and therefore one of the important 
questions of physics. After all, what would be the use of studying physics if the mysteries were not the most 
important things to investigate.” 

The Dynamic Universe can be seen as a detailed analysis of combining Feynman’s “great mystery” of 
zero-energy space to the “intriguing suggestion of spherically closed space” — by the dynamics of space as 
spherically closed structure.  

Such a solution does not work in the framework of the relativity theory which is based 
on the constant velocity of light, and time as the fourth dimension. A dynamic solution 
requires universal time and a metric fourth dimension that allow velocity and momentum 
equally in the three space dimensions and the fourth dimension. 

Relativity in Dynamic Universe means relativity of local to the whole. Local velocities 
in space become related to the velocity of space in the fourth dimension, and local gravi-
tation becomes related to the total gravitational energy in space. Local gravitational sys-
tems expand in direct proportion to the expansion of whole space. It means that, unlike 
in GR based cosmology, galaxies and planetary systems expand in direct proportion to 
the expansion of whole space. Everything in space is inter-related. The velocity of light is 
linked to the velocity of space in the local fourth dimension, and the frequency of atomic 
clocks as well as the rates of most physical processes are related to the local velocity of 
light.  

The dynamic approach does not allow the relativity principle and the associated free-
dom of choosing the state of rest. The local state of motion is related to the state preced-
ing the buildup of the kinetic energy. Any motion in space has its history that links it to 
the system energizing the motion. The energy structure of space is described as a system 
of nested energy frames starting from hypothetical homogeneous space as the universal 
frame of reference and proceeding down to local frames in space.  

The zero-energy principle 

The zero-energy principle has its roots in Aristotle’s entelechy, the actualization of a 
potentiality. Gottfried Leibniz referred to Aristotle’s entelechy in his Essays in Dynam-
ics4: “There is neither more nor less power in an effect than in its cause.” The concept of energy was 
fully recognized first as a part of the development of thermodynamics in the late 19th cen-
tury. The possibility of the overall zero-energy balance in space was stated by Dennis Sci-
ama in his lectures on inertia in 19535 and Richard Feynman in his lectures on gravitation 
cited above.  

In the Dynamic Universe, the primary energy buildup and release of matter in space 
are described as a zero-energy process of the spherical structure; in the contraction phase, 
the energy of motion is obtained against the release of gravitational energy, in the expan-
sion the energy of motion is released back to the energy of gravitation. The energy of mo-
tion obtained in the contraction is observed as the rest energy of matter – as the energy 
of motion in the fourth dimension. The rest energy is balanced by the global gravitational 
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energy due to the rest of space. The buildup of local structures in space conserves the 
total energy; momentum and kinetic energy in 3D space reduce the rest energy of the ob-
ject in motion. Relativity in the DU is a direct consequence of the conservation of energy; 
relativity gets its expression in terms of the locally available energy, e.g., the rates of phys-
ical processes become a function of the local energy state. Atomic clocks in motion or at 
high gravitational field run slow due to the reduced rest energy of the oscillating elec-
trons.  

1.1.2 Mass objects and the two-fold expression of energy 

The Dynamic Universe theory means a major change in the paradigm. We need to go 
back to the Greek philosophers to reawaken the discussion of the essence of mass as a 
substance. Mass as a wavelike substance for the expression energy in the DU has some-
thing in common with the Greek Apeiron as the indefinite substance for material forms, 
originally introduced by Anaximander in the 6th century BC. Apeiron was not defined pre-
cisely; the descriptions given by different philosophers deviate substantially from each 
other but comprise the basic feature of Apeiron as the primary source for all visible forms 
in cosmos. 

The DU shows “unity via duality”; mass is the substance in common for the energies 
of motion and gravitation that emerge and then vanish in a dynamic zero-energy process, 
giving existence to observable physical reality. As a philosophical concept, the primary 
energy buildup process in the DU is related to the Chinese yin-yang concept, where the 
two inseparable opposites are thought to arise from emptiness and end up in emptiness. 
In Greek philosophy, perhaps the ideas closest to the yin-yang concept are expressed by 
Heraclitus, contemporary to Anaximander.  

Mathematically, the abstract role of mass as the substance for the expression of the 
complementary energies of motion and gravitation is seen in equation 
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with m as a first-order factor both in the energy of motion and gravitation. In (1.1.2:1), 
written for the balance of the energies of gravitation and motion in hypothetical homo-
geneous space, where the 4-velocity of space is c0, and the 4-radius, the distance to the 
mass equivalence M” at the barycenter of space, is R4.  

The energy of motion expressed by mass m is local by its nature. The counterbalanc-
ing energy of gravitation is due to all the rest of mass in space. Equation (1.1.2:1) does 
not only mean complementarity of the two types of energies but also complementarity of 
the local and the whole. We may say that the antibody of a local mass object is the rest of 
space – or that, the localized expression of the energy of a mass object is its rest energy, 
and the non-localized expression of its energy is the global gravitational energy arising 
from the rest of space, Figure 1.1.2-1. It looks like the complementary nature of local and 
the rest of space in the Dynamic Universe reflects the idea of Leibniz’s monads as “per-
petual, living mirrors of the universe”.  
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1.1.3 Linkage between GR space and DU space 

The balance of the rest energy and gravitational energy 

One of the characteristic features of the DU is the balance between the global gravita-
tional energy and the rest energy of any mass object in space, which in the complex quan-
tity presentation appears as the balance of complementary energies in the fourth dimen-
sion. For making sense with velocity, momentum and the corresponding energy of mo-
tion in the fourth dimension, the fourth dimension shall be studied as a metric dimension. 

In fact, the stress-energy tensor in general relativity has the same message when inter-
preted in the light of Gauss’s divergence theory or simply as the physical linkage of pres-
sure and energy content. On the cosmological scale, in homogeneous space, the stress-
energy tensor can be expressed in the form 
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where, the energy density mc 2/dV is constant in whole space, and the locally observed net 
force densities F11/dA, F22/dA, and F33/dA in the space directions are equal to zero. The 
energy content of volume dV is equal to the pressure uniformly from all space directions, 
which can be interpreted as the integrated gravitational force from whole space. Once the 
global gravitation on element mc 2/dV appears in the fourth dimension, the center of 
gravity must be in the fourth dimension at equal distance from all space locations.  
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Figure 1.1.2-1(a) The twofold nature of matter at rest in space is manifested by the energies of 
motion and gravitation. The intensity of the energies of motion and gravitation declines as space 
expands along the 4-radius. (b). Complementarity of local and whole can be seen in the comple-
mentarity of the local rest energy and the global gravitational energy arising from all the rest of 
mass in space. The antibody of a local mass object is the rest of space. 
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Einstein drew a similar conclusion in his Berlin Writings in 1914–1917 6: “... If we are to 
have in the universe an average density of matter which differs from zero, however small may be that dif-
ference, then the universe cannot be quasi-Euclidean. On the contrary, the results of calculation indicate 
that if matter be distributed uniformly, the universe would necessarily be spherical (or elliptical).” 

For saving the equality of all locations in space, elliptic solutions must be excluded, 
and we enter to the DU equation 
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"GM
mc m

R
=  (1.1.3:2) 

In real space, for conserving the balance of the energies in the local mass center 
buildup, the total gravitational energy is divided, via the tilting of local space, into orthog-
onal components with the local gravitational energy in a space direction and the reduced 
global gravitational energy in the fourth dimension. This also means a reduction of the 
local rest energy of objects and consequently, e.g., reduction of the characteristic frequen-
cies of atomic oscillators in tilted space, Figure 1.1.3-1. 

Zero-energy balance and the critical mass density 

Based on measurements of microwave background radiation by the Wilkinson Mi-
crowave Anisotropy Probe (WMAP), the mass density in space is concluded to be essen-
tially equal to Friedmann’s critical mass density 
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where G (≈ 6.6710–11 [Nm2/kg2]) is the gravitational constant and H0 the Hubble con-
stant [≈70 (km/s)/Mpc]. In FLRW cosmology, such a condition means “flat space” ex-
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Figure 1.1.3-1. The overall energy balance in space is conserved via tilting of space in local mass 
center buildup creating the kinetic energy of free fall and the local gravitational energy. Due to the 
tilting, the velocity of space in the local fourth dimension is reduced compared to the 4-velocity 
of the surrounding non-tilted space. The buildup of dents in space occurs in several steps; dents 
around planets are dents in the larger dent around the Sun – which is a local dent in the much 
larger Milky Way dent.  
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panding with the energy of motion and gravitation in balance. Assuming the volume of 
space as the volume of a 3D sphere with radius RH =c/H0 equation (1.1.3:3), the total 
mass in space and the velocity of light can be expressed as  
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Solved from the Friedmann’s critical mass density, the rest energy of mass m and the 
total mass M=Σm in GR space are 

2
2 22 2

; ½
H H H

GMm GM GM
mc Mc c

R R R
= = =  (1.1.3:5) 

Formally, the last form of (1.1.3:5) describes c as the Newtonian velocity of free fall or 
the escape velocity at distance RH from mass M at the barycenter representing the total 
mass in space. This means that the rest energy, as the Newtonian kinetic energy of mass 
m, is counterbalanced with the global gravitational energy arising from hypothetical mass 
M at distance RH from mass m anywhere in space. Such a solution is possible only in 3D 
space as the surface of a 4D sphere with radius RH. A detailed study of (1.1.3:5) shows 
that the factor ½ in the rest energy Mc 2 comes from the numerical factors used in Ein-
stein’s field equations to make them consistent with Newtonian gravitation at a low gravi-
tational field in 3D space.  

1.1.4 Definitions and notations 

In comparison with classical mechanics and the theory of relativity, the most signifi-
cant differences in the Dynamic Universe approach come from the holistic perspective 
and the use of dynamics instead of kinematics and metrics. In the Dynamic Universe, 
space is described as the 3D surface of a 4D sphere. The properties of local structures are 
derived from the whole by conserving the zero-energy balance initially assumed in homo-
geneous space with all mass uniformly distributed in the volume. Dynamic Universe hon-
ors absolute time and distance as coordinate quantities; in DU, relativistic effects appear 
as consequences of the conservation of total energy in all energy conversions in space. 

In homogeneous space, the direction of the fourth dimension is the direction of the 4-
radius of space. In locally curved space near mass centers, the fourth dimension is the 
direction perpendicular to the three space directions.  

It is useful to denote the fourth dimension as the imaginary direction. Phenomena that 
act both in the fourth dimension and a space direction are expressed in the form of com-
plex functions. For example, the rest energy that in the DU framework is the energy of 
motion an object has due to the motion of space in the fourth dimension appears as the 
imaginary component of the total energy of motion. Correspondingly, the global gravi-
tational energy appears as the imaginary component of the gravitational energy arising 
from the total mass in space. The total mass is represented by the mass equivalence at the 
barycenter of the 4D sphere. As the inherent form of the energy of gravitation, Newtoni-
an gravitational energy is assumed in hypothetical homogeneous space. The global gravi-
tational energy of mass m in hypothetical homogeneous space is  
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where m is a test mass, G the gravitational constant, ρ the mass density in space, R4 the 4-
radius of space, V=2π 2R4

3 the volume of the 3D space and M” = 0.776·MΣ the mass 
equivalence of the total mass MΣ in space [see Chapter 2 for formal derivation of 
(1.1.4:1)]. The subscript “(0)” in the global gravitational energy in (1.1.4:1) refers to hypo-
thetical homogeneous space. Superscript (¤) is used to denote a complex function. A sin-
gle apostrophe ( ' ), [or no apostrophe to meet traditional notations], denotes the real part 
of the complex function, and double apostrophe ( " ) the imaginary part.  

In the four-dimensional manifold allowing motion of space and motion in space, a 
mass particle moving in space has the momentum both in a space direction and in the 
fourth dimension. As a consequence of the zero-energy balance of motion and gravita-
tion, the velocity of light in space is equal to the velocity of space in the fourth dimen-
sion. In hypothetical homogeneous space the velocity of light, c0, is equal to the expan-
sion velocity of space in the direction of the 4-radius. In locally tilted space, the velocity 
of light is equal to the velocity of space in the local fourth dimension c. In the vicinity of 
the Earth, the local velocity of light, c, is estimated as c ≈ 0.999 999 c0. 

In the complex quantity presentation, the momentum in space is the real component 
and the momentum in the fourth dimension, the rest momentum, the imaginary compo-
nent of the complex total momentum 

¤ "p mc + = +p p i p i  (1.1.4:2) 

The energy of motion is expressed as the product of the system-velocity, the expan-
sion velocity of the 4-sphere c0 as a scalar quantity and the complex momentum in the 
system as a vector quantity.  
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Traditionally, energy is used as a scalar quantity. Equation (1.1.4:3) allows the study of 
energy as a complex quantity where the imaginary component represents the global con-
tribution, and the real component the local contribution to the total energy. The absolute 
value of the total energy of motion, the modulus of the complex energy is  
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which is essentially the same as the total energy in special relativity.  
Any motion in space is associated with the motion of space which brings the imagi-

nary components to the momentum and the energy of motion. In the DU framework, 
energy is the primary postulated quantity and force is a derived quantity as the gradient of 
potential energy or time derivative of momentum. Force, as the gradient of potential en-
ergy, is considered as the trend towards minimum energy, the driving force of Aristotle’s 
entelechy, the actualization of a potentiality. 

The complex quantity presentation of energy unifies the expression of the energy of 
motion of mass objects and electromagnetic radiation. A mass object at rest in a local en-
ergy frame has the imaginary component only, a mass object moving in a local energy 
frame in space has both imaginary and real components. Electromagnetic radiation prop-
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agating in space has only the real component of the energy. Applying the mass equiva-
lence of electromagnetic radiation, mλ=h0/λ, the expressions for the rest momentum and 
energy of electromagnetic radiation are formally identical with the expressions of the im-
aginary rest momentum and rest energy of mass m, Figure 1.1.4-1.  

1.1.5 Reinterpretation of Planck’s equation  

For understanding the wave nature of mass and the essence of quantum, it is neces-
sary to take a look at the physical messages of Planck’s equation.  

The Planck equation originates from the need for solving the wavelength spectrum of 
blackbody radiation. Around 1900, Max Planck realized that the atoms emitting and ab-
sorbing radiation at the walls of a blackbody cavity could be considered as harmonic os-
cillators able to interact with radiation at the resonant frequency of the oscillator only 7. 
As an intuitive view, he proposed, that the energy, which each oscillator emits or absorbs 
in a single emission/absorption process is proportional to the frequency of the oscillator. 

He described the energy of such a single interaction with the equation E = hf, where h 
is a constant. According to Planck’s interpretation, electromagnetic radiation is emitted or 
absorbed only in energy quanta proportional to the frequency of the radiation. Planck saw 
this contradicting the classical electromagnetism as expressed by Maxwell's equations. 
Once we solve Maxwell’s equations for the energy emitted into one cycle of radiation by a 
single electron transition in an antenna related to the wavelength, we obtain Planck's 
equation. 

The physical interpretation of Planck’s equation as the energy emitted into a cycle of 
radiation can be seen directly by writing Planck’s equation in the form  

E hf h dt= =  (1.1.5:1) 

where h [ Js] is the Planck constant and dt =1/f means the cycle time. Planck related the 
energy of quantum to the average kinetic energy of a particle, hf =kT, which, in this con-
nection, can be interpreted as the kinetic energy of an electron.  

The Maxwellian solution of a quantum does not require the DU theory or any other 
new assumptions. The required interpretation of a point source as “one-wavelength di-
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Figure 1.1.4-1. The complex presentation of momentum. (a) Mass object at rest in space, (b) mass object with 
momentum p in space, (c) electromagnetic radiation with momentum prad in space.  
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pole” in the fourth dimension can be equally concluded as the line element cdt in the 
fourth dimension in the SR/GR framework. 

We have to apply vacuum permeability, μ0, instead of vacuum permittivity, ε0, as the 
vacuum electric constant. The solution relates the dipole characteristics (number of oscil-
lating electrons, dipole length/emitted wavelength, radiation geometry) to the Planck 
constant and the frequency of the radiated electromagnetic wave. Also, it relates the 
Planck constant to the fundamental electromagnetic constants, the unit charge, e, the vac-
uum permeability, μ0 – and the velocity of light, which appears as a hidden factor in the 
Planck constant 
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where h is the Planck constant, f and λ are the frequency and wavelength of the radiation 
emitted. Factor 1.1049 is related to the fine structure constant and regarded as the geome-
try constant of a Planckian antenna. For disclosing the physical meaning of Planck’s equa-
tion, it is important to remove the velocity of light from the Planck constant by defining 
“the intrinsic Planck constant” h0=h/c. Applying the intrinsic Planck constant, Planck’s 
equation for a cycle or quantum of electromagnetic radiation obtains the form 
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where λ is the wavelength of the radiation cycle emitted. The quantity h0/λ = mλ has the 
dimension of kilograms [kg] that, physically, can be interpreted as the mass equivalence of a 
cycle of radiation generated by a unit charge oscillation in the emitter. For N electrons oscil-
lating in the emitter, the energy emitted into a cycle of radiation is  
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where N 2 is the intensity factor.  
A further important result of the breakdown of Planck’s constant into primary electri-

cal constants is the disclosure of the physical nature of the fine structure constant α. Sub-
stituting equation (1.1.5:2) into the expression of the fine structure constant shows the 
fine structure constant as a pure numerical or geometrical constant without any connec-
tion to other natural constants 
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The wave nature of mass 

Applying the intrinsic Planck constant, the Compton wavelength of mass m obtains 
the form  
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where the last equation uses the wave number k=2π/λ and the reduced intrinsic Planck 
constant ћ0=h0/2π. The Compton wavelength of a mass object is the wavelength equiva-
lence of mass, like the inverse to the mass equivalence of electromagnetic radiation 

0 0m mm h λ m h k= =  (1.1.5:7) 

which illustrates the wave nature of mass. 
The concept of mass as the substance for the expression of energy can be extended to 

Coulomb energy E 
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where me is the mass equivalence of Coulomb energy. The final form of (1.1.5:8) indicates 
that acceleration of a charged mass object in an accelerator can be expressed as a transfer 
of mass to the accelerated object. Transfer of mass gives a physical explanation to the 
mass increase of accelerated objects. In the framework of special relativity, the increase of 
“relativistic mass” is introduced as a consequence of the velocity and described in terms 
of coordinate transformations. 

The solution of Planck’s equation from Maxwell’s equations confirms the interpreta-
tion of Planck’s equation as the energy conversion occurring at the emission or absorp-
tion of electromagnetic radiation.  

Planck’s equation does not describe an inherent property of radiation. Radiation propagating in ex-
panding space loses power and energy density with the expanding wavelength but conserves the energy car-
ried by a cycle of radiation. This is exceedingly important, e.g., in the interpretation of the luminosity of 
cosmological objects and the microwave background radiation.  

The “antenna solution” of blackbody radiation 

Planck’s radiation law can be directly concluded from the antenna theory as a combi-
nation of two limiting mechanisms: At the long wavelength part of the spectrum, the 
thermal energy, kT>hf, is enough to activate all the emitters, “the surface antennas”, and the 
power density is limited by the emitter density. At the short wavelength part of the spec-
trum, where kT<hf, the limitation comes from the thermal energy available for activation 
of the emitters, Figure 1.1.5-1. 

The unified expression of energy 

The breakdown of Planck’s constant allows a unified expression for the rest energy of 
mass, the quantum of electromagnetic radiation, and the Coulombian energy. In a precise 
analysis, we make a distinction between the local velocity of light, c and the velocity of 
light in hypothetical homogeneous space c0, which is equal to the expansion velocity of 
space in the direction of the 4-radius, Figure 1.1.5-2.  



28 The Dynamic Universe 

 

 
 
 

 

Figure 1.1.5-2. Unified expressions for the rest energy of a localized mass object, the unit energy 
of a cycle of electromagnetic radiation, and the Coulomb energy.  
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Figure 1.1.5-1. Blackbody surface as an 
antenna field. Antenna active area is 
related to the wavelength as Aλ=λ2/4π, 
with emission intensity to half-space as 
Iλ = 1/Aλ = 2π/λ2, which leads to the 
Rayleigh-Jeans formula applying when 
all antennas are activated by the thermal 
energy, kT>hf. When only a part of an-
tennas are activated as described by the 
Maxwell-Boltzmann distribution of the 
thermal energy, kT<<hf, the emission 
intensity follows Wilhelm Wien’s radia-
tion law. Max Planck’s radiation law 
combines the two, plus covers the tran-
sition region where kT≈hf. 

( ),
2

2 1

1


−h f kT

π
I f T hf

λ e
 

kT hf kT hf kT hf  

                

( ),
π

I f T kT
λ


2

2

   
( ),

2

2 − hf kTπ
I f T hf e

λ
 

I 

f 



Introduction 29 

 

Mass objects as resonant mass wave structures 

 In the DU framework, a mass object (particle) is described as a spherically symmetric 
resonator in 3-space. The momentum of a resonator with standing waves built up of op-
posing waves and momentums in a space direction appears as the imaginary momentum, 
the rest momentum of the resonator. When a mass object is put into motion in space, the 
imaginary rest momentum will be accompanied by a real component equal to the net 
mass wave of the Doppler shifted front and back waves of the resonator – thus building 
up the de Broglie momentum 

( ) ( )

00 0

2 2
1 1

m

m dB

v c h λh h

λ λv c v c
→ = + = = =

− −
p p p c v c  (1.1.5:9) 

As illustrated by equation (1.1.3:10), the net momentum wave of a mass object can be 
interpreted as a mass wave corresponding to the wave equivalence of the “relativistic 

mass” ( )
2

0 1m v c− propagating at the velocity v of the moving mass object, or the de 

Broglie wave propagating at the velocity of light. 
In fact, the removal of the velocity of light from the Planck constant discloses the 

matter wave de Broglie was looking for: a wave does not disperse but follows the moving 
object. 

The intrinsic Planck constant and the mass wave concept discloses the close connection between the 
Compton wave and the de Broglie wave. 

The momentum wave is the sum of the momentums of Doppler shifted back and 
front waves of a moving resonator. Passing a double-slit, the momentum wave explains 
the interference pattern observed on the screen (Section 5.3.5), Figure 1.1.5-3. 

 
Figure 1.1.5-3. A mass object as a standing wave structure (drawn in the direction of the real axis). 
The momentum of the object moving at velocity βc is the external momentum as the sum of the 
Doppler shifted front and back waves, which can be described as the momentum of a wavefront 
propagating in the local frame in parallel with the propagating mass object. The interference pat-
tern observed in the double slit experiment demonstrates the momentum as a wavefront resulting 
in deflection of the propagation path observed as an interference pattern between wavefronts 
passing the two different slits. 
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1.2 Buildup of energy in space 

1.2.1 The primary energy buildup in space 

In Chapter 3, the buildup of the rest energy of matter is described as a contraction–
expansion process of spherically closed space. Starting from the state of rest in homoge-
neous space with essentially infinite radius means an initial condition where both the en-
ergy of motion is zero, and the energy of gravitation is zero, due to very high distances. A 
trend to minimum potential energy in spherically closed space converts gravitational en-
ergy into the energy of motion in a contraction phase. Space gains motion from gravita-
tion in a contraction phase and pays it back in an expansion phase after passing a singu-
larity. The dynamics of spherically closed space works like that of a spherical pendulum in 
the fourth dimension as illustrated in Figure 1.2.1-1. 

Homogeneous space has dynamics in the fourth dimension only, in the direction of 
the 4-radius of the spherically closed space. Applying the inherent energies of motion and 
gravitation to the zero-energy balance of motion and gravitation, we get the equation for 
the zero-energy balance of homogeneous space 

Σ
0 Σ 0

4

"
0m g

GM M
E E c M c

R
+ =  − =  (1.2.1:1) 

where MΣ is the total mass in space, and M” = 0.776 MΣ is the mass equivalence of 
whole space in the center of the spherical structure. 

Figure 1.2.1-1. Energy buildup and release in spherical space. In the contraction phase, the veloci-
ty of motion increases due to the energy gained from the release of gravitational energy. In the 
expansion phase, the velocity of motion gradually decreases, while the energy of motion gained in 
contraction is returned to the energy of gravitation. 

 

Energy of motion 

Contraction Expansion 

Energy of gravitation 
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The contraction-expansion cycle creating the motion of space is referred to as the 
primary energy buildup process of space. 

Using today’s estimates for the mass density in space, and the 4-radius, which corre-

sponds to the Hubble radius, R4 = RH  14 billion light years, the present velocity of the 
expansion, c0, in (1.2.1:1) is 

 0

4

"
300000 km/s

GM
c

R
=    (1.2.1:2) 

which is equal to the present velocity of light. It can be shown, that the velocity of the 
expansion of space in the direction of the 4-radius determines the maximum velocity in 
space and the velocity of light. 

Due to the dynamic nature of the zero-energy balance in space the velocity of space in 
the fourth dimension and, accordingly, the velocity of light slow down in the course of 
the expansion of space. The present annual increase of the R4 radius of space is 

dR4/R4  7.2 10–11/y. The deceleration rate of the expansion is dc0/c0  −3.6 10–11/y, 

which also means that the velocity of light slows down as dc/c   −3.6 10–11/year. In prin-
ciple, the change is large enough to be detected. However, the change is reflected in the 
ticking frequencies of atomic clocks via the degradation of the rest momentum, i.e., the 
frequencies of clocks slow down at the same rate as the velocity of light, thus disabling 
the detection. 

The velocity of light in the Dynamic Universe is not a natural constant but is deter-
mined by the velocity of space in the fourth dimension — the velocity of space in the 
fourth dimension is determined by the zero-energy balance in equation (1.2.1:1). 

An important conclusion from the primary energy buildup process is that the rest en-
ergy is not a property of mass or matter but has the nature of the energy of motion — 
not due to motion in space but due to the motion of space. In expanding space, the ve-
locity of space decreases due to the work the expansion does against the gravitation of 
the structure. It means that also the rest energy of mass in space diminishes, although the 
amount of mass in space is conserved. 

In the prevailing Friedman-Lemaître-Robertson-Walker (FLRW) cosmology, or “Big Bang cosmolo-
gy” all energy and the flow of time in space were triggered by a sudden event or quantum jump about 14 
billion years ago. A major difference between the primary energy buildup in the DU and the energy 
buildup in the Big Bang cosmology is that the energy of matter in the DU has developed against the reduc-
tion of the gravitational energy in a continuous process in a contraction phase preceding the ongoing expan-
sion phase. Space has lost volume and gained velocity in the contraction phase and pays the velocity back 
to volume in the ongoing expansion phase.  

The basis of the zero-energy concept was first time expressed, at least implicitly, by 
Gottfried Leibniz, contemporary with Isaac Newton. Although the concept of energy was 
not yet matured, the idea of the zero-energy principle can be recognized in Leibniz’s vis 
viva, the living force mv2 (kinetic energy) that is obtained against the release of vis mortua, 
the dead force (potential energy) – or vice versa. “Action is always equal to reaction, and the 
complete effect is always equivalent to the total cause” 8,9. 
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1.2.2 Buildup of kinetic energy in space 

Buildup of velocity, momentum and kinetic energy in space requires an input of energy. The energy in-
put may come from an accelerating system at constant gravitational potential or via the release of gravita-
tional energy in free fall.  

Kinetic energy at constant gravitational potential 

In the framework of special relativity, the kinetic energy is expressed in form 

( )
22 2 21 Δkin total restE E E mc v c mc mc= − = − − =  (1.2.2:1) 

where Δm is the relativistic mass increase. In the SR framework, following the relativity 
principle and the kinematic explanation, Δm is a consequence of the velocity and the as-
sociated coordinate transformations.  

Equation (1.2.2:1) also holds in the DU framework; following the conservation of en-
ergy, Δmc 2 is the energy released by the accelerating system to build up the kinetic energy 
and the associated momentum and velocity. The total energy of a moving object is   

( ) ( )¤ ¤

0 0 0Δ i Δtotal totalE c p c m m v mc c m m c= = + + = +  (1.2.2:2) 

which relates the total energy to the total momentum consisting of the rest momentum as 
the imaginary part imc, and the real part p=(m+Δm)c, the momentum in space. The last 
form of (1.2.2:2) is the modulus of the complex function, Figure 1.2.2-1. 

The complex function formalism allows a detailed study of the energy structure and 
the buildup of momentum in space. The momentum in space consists of two parts: mo-
mentum mv as the real component of mc in the total momentum, and Δmv as the real 
component of Δmc in the total momentum.  
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Figure 1.2.2-1. The momentum of an object moving in space at velocity v consists of the contri-
bution mv as the real component of momentum mc contributing to the total energy, and compo-
nent Δmv as the real component of Δmc contributing to the total energy. The imaginary compo-

nent of mc is the rest momentum of the moving object, 
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The rest momentum of the moving object is reduced. Part mc of the total momentum 

of the moving object can be divided into orthogonal components: momentum mv in a 

space direction and 21mc β−  in the imaginary direction which is the reduced rest mo-

mentum of the moving object. While the local 4-velocity of space is c, the reduction of 
the rest momentum shall be understood as the reduction of the rest mass. The reduced 
rest mass mrest(β) is the counterpart of the increased mass contributing to the momentum in 
space, mβ (the relativistic mass in the SR framework) 

( )
2 21 , 1βrest β

m m β m m β= − = −  (1.2.2:3) 

where β=v/c and m is the rest mass of the object at rest in the local frame of reference.  
The reduction of the rest mass means a corresponding reduction in the rest energy 

and the global gravitational energy of the moving object which completes the conserva-
tion of the overall balance of the energies of motion and gravitation. The imaginary com-

ponent 
"

kin
E  of the complex kinetic energy 

¤

kin
E is the work done against the global gravi-

tational energy by the buildup of the motion as central motion. This means a quantita-
tive expression of Mach’s principle, Figure 1.2.2-2. 

Kinetic energy in free fall in a gravitational field 

The buildup of mass centers in space requires the buildup of motion and kinetic ener-
gy via the release global gravitational energy. For conserving the total energy of motion 
and gravitation in such an energy conversion, space as the zero-energy “surface” is tilted 
which turns part of the 4-velocity of space into velocity in space by rotating the local 
fourth dimension relative to the fourth dimension in the non-tilted space, Figure 1.2.2-3. 
In free fall towards a mass center, there is no source for increased mass like in the case of 
kinetic energy buildup by local energy release. The velocity and momentum are obtained 
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Figure 1.2.2-2. The reduction of the rest mass means an equal reduction in the rest energy Em and 
the global gravitational energy Eg of the moving object. The imaginary component E”kin of the 
complex kinetic energy E¤

kin is the work done against the global gravitational energy by the 
buildup of motion as central motion in spherically closed space. This means a quantitative expres-
sion of Mach’s principle.
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against the reduction of the velocity and momentum due to the motion of space in the 
local fourth dimension. It means that unlike in acceleration at constant gravitational po-
tential there is no insert of mass in free fall. Kinetic energy is obtained against a reduction 
of the rest energy of the falling object,  

( ) ( ) ( ) ( ) 00 0
1 cos Δkin rest restrest ψ

E E E E ψ c m c= − = − =  (1.2.2:4) 

where Δc is the reduction of the local velocity of light associated with the local tilting of 
space. The buildup of kinetic energy combining inertial acceleration and gravitational ac-
celeration can be written as 

( )0 Δ ΔkinE c c m m c= +  (1.2.2:5) 

where the first term shows the kinetic energy obtained at constant gravitational potential 
by the insert of energy c0Δmc and the second term, c0mΔc, the kinetic energy obtained in 
free fall against reduction of the rest energy due to the reduction of the local velocity of 
light. 

The zero-energy principle behind the Dynamic Universe cancels the equivalence 
principle behind the general theory of relativity. 

 The reduction of the velocity of space in the local fourth dimension also means a re-
duction of the local velocity of light and the local rest momentum. 

The reduced rest momentum in tilted space results, e.g., in reduced ticking fre-
quency of atomic clocks in the vicinity of mass centers in space. 

The reason for the instability of orbits near black holes predicted by general relativity 
can be traced to the equivalence principle increasing the “relativistic mass” in free fall. 
DU predicts stable orbits at any distance from local singularities (Sections 1.2.6 and 
4.2.8). 
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Figure 1.2.2-3. Free fall of mass m towards mass center M in space. The momentum of free fall 
is obtained against a reduction of the rest momentum in the local fourth dimension. 
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Tilting of local space 

The reduced local rest energy in tilted space is balanced by the reduced global gravita-
tional energy E”g(δ). The tilting angle of space near mass centers can be solved from the 
release of global gravitational energy. The global gravitational energy of a mass object in 
homogeneous space builds up from gravitation affecting uniformly in all space directions. 
Due to the spherical geometry, the integrated effect of gravitation is seen in the fourth 
dimension like affected by the mass equivalence of space at the 4-center of the structure. 
Removal of a certain amount of mass from the symmetry for creating a local mass center 
M means a reduction in the global gravitation in the vicinity of the center. At distance r 
from the local center, the reduction in global gravitational energy of test mass m is equal 
to the gravitational energy created by mass M uniformly distributed around at distance r 
from m. Accordingly, the locally observed global gravitational energy is 

( ) ( ) ( ) ( ) ( ) ( )2

00 0 0
cos 1 1

g δ g g g
E E ψ E GM rc E δ= = − = −  (1.2.2:6) 

where δ is the gravitational factor at distance r from the local mass center M 

2

0 1 cosδ GM rc ψ = −  (1.2.2:7) 

The 4-velocity of space determining the local velocity of light at distance r from M is  

( )0 0cos 1c c ψ c δ= = −  (1.2.2:8) 

Equations (1.2.2:6) and (1.2. are  is closely related to Schwarzschild space. In Schwarz-
schild space, the fourth dimension is the time-like dimension, and the tilting angle is re-
lated to the reduced proper time  

( )' cos 1 2 1dt dt ψ dt δ dt δ= = −  −  (1.2.2:9) 
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Figure 1.2.2-4. Space around a local gravitational frame, as it would be without the mass center, is 
referred to as apparent homogeneous space to the local gravitational frame. Accumulation of 
mass into mass centers occurs in several steps. Starting from hypothetical homogeneous space, 
the “first-order” gravitational frames, like the frame around mass M1 in the figure, have hypothet-
ical homogeneous space as the apparent homogeneous space. In subsequent steps, smaller mass 
centers may be formed within the tilted space in the “first order” frame. For those frames, like M2 
in the figure, space in frame M1, as it would be without the mass center M2, serves as the apparent 
homogeneous space to frame M2. 
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In real space, the buildup of mass centers occurs in several steps, Figure 1.2.2-4. In 
each step, the local dent forming a local gravitational frame is related to its parent frame. 
The global gravitational energy in the n:th mass center is 

( ) ( )
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" "
" 1

" "

n

ig n

i

GM m GM m
E δ

R R=

= − − = −  (1.2.2:10) 

where R”0 =R4 is the 4-radius of homogeneous space. The local apparent 4-radius R” is 
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The local velocity of light at gravitational state δn in the n:th frame is 

 ( )0
1

1
n

n i
i

c c c δ
=

= = −  (1.2.2:12) 

where δi is the gravitational factor in the i:th gravitational frame. 
Combining the effects of motion and gravitation, the rest energy E rest(δ,β) of a mass ob-

ject moving at gravitational state δ=δn, at velocity β=βn in the n:th frame is 

( ) ( ) ( ) 2
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" 1 1
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rest i im nrest δ β
i

E E c mc E δ β
=

= = = − −  (1.2.2:13) 

1.2.3 Energy structures in space 

The system of nested energy frames 

The system of nested energy frames is a central feature of the Dynamic Universe. It 
means full replacement of the observer-centered frame of reference of special and general 
relativity. 

The buildup of the system of nested energy frames follows the conservation of ener-
gy. Any local frame is obtained via the release of rest energy and global gravitational ener-
gy in the parent frame. A state of motion in a local frame is related to the state of rest in 
the frame; the kinetic energy is obtained against the release of potential energy in the 
frame. A state of gravitation in a local frame is related to the gravitational state as it were 
without the local frame (or mass center) in a specific location in space. 

In the Earth gravitational frame, referred to as the Earth Centered Inertial frame 
(ECI-frame) in the SR/GR framework, any gravitational state in the Earth gravitational 
frame is related to the gravitational state in the Sun gravitational frame in the specific lo-
cation in space. Any state of motion in the Earth gravitational fame is related to the state 
of rest in the Earth frame which means a state excluding the rotation of the Earth and 
motion relative to the surface of the Earth.  

The Earth gravitational frame moves at the orbital velocity of the Earth in the Solar 
frame. The state of motion and gravitation of the Earth gravitational frame in the Solar 
gravitational frame is determined by the orbital velocity and radius, respectively. Due to 
the eccentricity of Earth’s orbit, the state of motion and gravitation change periodically 
during the year.  
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Figure 1.2.3-1. The rest energy of an object in a local frame is linked to the rest energy of the local 
frame in its parent frame. The system of nested energy frames relates the rest energy of an object 
in a local frame to the rest energy the object would have at rest in homogeneous space.  
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Any local frame on the Earth is subject to Earth’s rotation affecting the rest mass of 
objects in the frame – and the local distance to the barycenter of the Earth, which deter-
mines the local gravitational state and the local velocity of light. Electron or any other 
charged particle accelerated in an accelerator obtains its kinetic energy from the electric 
field in the accelerator which thus forms a frame as a subframe in the Earth gravitational 
frame. In an accelerator, the accelerated particle moves at a constant gravitational poten-
tial, which means that its rest energy is affected by the motion only.  

The system of nested energy frames is illustrated in Figure 1.2.3-1. Starting from a 
charged particle in an accelerator on the Earth, the chain of nested energy frames can be 
listed as follows: The local frame to the ion is the accelerator frame; the rest energy of an 
ion moving at velocity v in the accelerator is related to the rest energy of an ion at rest in 
the accelerator frame or the laboratory frame housing the accelerator. The parent frame 
to the accelerator/laboratory frame is the Earth gravitational frame where the accelera-
tor/laboratory frame has the rotational velocity and gravitational factor characteristic to 
the location and altitude of the laboratory on the Earth. 

The Earth gravitational frame orbits the Sun in the Solar gravitational frame; the Solar 
gravitational frame orbits the center of the Milky Way in the Milky way gravitational 
frame which is a subframe of the Local group moving in hypothetical homogeneous 
space which serves as the universal frame of reference to the chain of nested frames. 

The topography of the fourth dimension 

The curvature of space near local mass centers is a consequence of the conservation 
of the energy balance created in the primary energy buildup of space. Because the fourth 
dimension is a geometrical dimension, the shape of space can be expressed in distance 
units, including the topography in the fourth dimension. Dents in space are associated 
with a reduced velocity of light. Figure 1.2.3-2 illustrates the “depth” profile of the plane-
tary system in the vicinity of the Earth. 

 

Figure 1.2.3-2. The topography of the Solar System in the fourth dimension. Earth is about 
26 000 km higher than the Sun; Pluto is about 180 000 km higher than the Sun in the fourth 
dimension. 
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The velocity of light in the dents around mass centers in space is reduced resulting in 
the Shapiro delay, and the path of light is bent. The Shapiro delay is affected both by the 
lengthening of the path and the reduction of the velocity of light near mass centers.  

The effect of the difference in the GR and DU predictions for the Shapiro delay is not 
detectable in the experiments that have been performed (see Section 7.3.4). 

The local velocity of light 

The local velocity of light is determined by the velocity of space in the local fourth 
dimension. The local velocity light is a function of the distance from mass centers in 
space. On the surface of the Earth, the velocity of light is reduced by about 20 cm/s 
compared to the velocity of light at the distance of the Moon from the Earth. The veloci-
ty of light at the Earth’s distance from the Sun is about 3 m/s lower than the velocity of 
light far from the Sun, Figure 1.2.3-3. 

The velocity of light is linked to the local 4-velocity of space which is a property of the 
gravitational state in the local gravitational frame. The motion of an object at a constant 
gravitational potential in the local frame as well as the motion of the local gravitational 
frame at a constant gravitational potential in its parent frame does not change the local 
velocity of light. This means that the velocity of light observed in a space location is not 
summed to the velocity of the observer as long as the observer moves at constant gravita-
tional potential.  

In the DU framework, e.g., an interferometer or a resonator is a local energy frame 
where the opposite waves have the velocity of light equal to the local 4-velocity of space 
in the particular space location. The motion of a resonator in its parent frame creates a 
net Doppler wave observable in the parent frame but conserves the resonance condition 
in resonator frame (see Section 5.3.2. for a detailed analysis). 

As a simplified picture — the linkage of the local velocity of light to the local 4-
velocity of space means that electromagnetic radiation in space propagates at a “satellite 
orbit” relative to the mass equivalence of space seen in the local fourth dimension. Mov-
ing at the local 4-velocity, radiation as an energy object (with mass equivalence) creates a 
centrifugal force opposite to the gravitational force raising from the mass equivalence of 
space in the fourth dimension, thus making electromagnetic radiation or photons look 
like “massless objects”, Figure 1.2.3-4.  
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The linkage of the local velocity of light to the local 4-velocity of space explains the 

constancy of the velocity of light observed in interferometric measurement like, e.g., the 
famous Michelson-Morley experiment which was one of the key triggers for the devel-
opment of coordinate transformations behind the theory of relativity. Also, it explains the 
necessity of expressing the frequencies of atomic clocks on the Earth and in Earth satel-
lites in terms of motion and gravitational state in the Earth gravitational frame (the Earth 
Centered Inertial (ECI) frame in the framework of the theory of relativity). 

1.2.4 The frequency of atomic clocks 

The quantum mechanical solution 

At the time special and general theories of relativity were formulated, there was no 
theory on the emission and absorption frequencies of atomic objects that determine the 
ticking frequency of atomic clocks. The solution to the characteristic frequencies was ob-
tained first by applying the quantum mechanical analyses of atomic structures. In a gen-
eral form, the emission/absorption frequency can be expressed in terms of the rest ener-
gy of the oscillating electrons, the Planck constant, and the quantum numbers character-
izing the energy states related to the oscillation 
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( )
( )

2
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1, 2

Δ
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n n e
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f F α n l m m

h h
= =  (1.2.4:1) 

where ΔE(n1,n2) is the difference of the rest energy of an electron in the two energy states 
relevant to the emission/absorption process, h is the Planck constant, me the rest mass of 
electron of the atom in the local energy frame, and c the local velocity of light. The func-
tion ΔF(α,n,l,ml,ms) is determined by the fine structure constant α and the quantum num-

Figure 1.2.3-4. Electromagnetic radiation propagating in space is balanced by the gravitation due 
to the mass equivalence in the fourth dimension. The mass equivalence appears at distance R” in 
the direction of the local fourth dimension following the motion of the local frame in its parent 
frame in space. 
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bers characterizing the energy states in question. Applying the intrinsic Planck constant 
h0, defined in equation (1.1.5:3), equation (1.2.4:1) obtains the form 
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( )
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Δ
Δ , , , ,

n n e
l sn n

E m c
f F α n l m m

h h
= =  (1.2.4:2) 

where ΔF consists of numerical factors only; the quantum numbers and the fine structure 
constant which also is a numerical constant, see equation (1.1.5:5).  

The effect of motion and gravitation 

As shown by equation (1.2.4:2), the characteristic frequency of atomic oscillators is di-
rectly proportional to the rest momentum of the oscillating electrons – and thereby af-
fected by the velocity and gravitational state of the oscillator in a local frame – and 
through the velocity and gravitational state of the local frame in its parent frames 
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where f(0,0) is the frequency of the oscillator at rest in hypothetical homogeneous space. 
The frequency of an atomic emitter in an accelerator is related to the frequency flab of a 

similar atom at rest in the accelerator or the laboratory housing the accelerator 

21acc lab accf f β= −  (1.2.4:4) 

The frequency of an atomic clock in a laboratory with the velocity and gravitational 
factors βlab and δlab, respectively, is related to the frequency of a hypothetical clock with 
the gravitational factor δEarth=0, and the velocity factor βEarth=0.  

( ) ( ) 2

0,0
1 1lab lab labEarth

f f δ β= − −  (1.2.4:5) 

The frequency of an atomic clock in an Earth satellite is related to the hypothetical 
clock with the gravitational factor δEarth=0, and the velocity factor βEarth=0 just like the 
laboratory clock  

( ) ( )( ) ( )
2

0,0
1 1satellite Earth satellite Earth satellite Earth

f f δ β= − −  (1.2.4:6) 

The frequency of an atomic clock in a spacecraft flying in the solar system outside the 
gravitational interaction of the Earth is related to a hypothetical clock with the gravita-
tional factor δSun=0, and the velocity factor βSun=0.  

( ) ( )( ) ( )
2

0,0
1 1spacecraft Sun pacecraft Sun spacecraft Sun

f f δ β= − −  (1.2.4:7) 

For comparing clocks outside the near space region, a hypothetical clock at rest in the 
Sun gravitational frame is needed. 

The velocity terms in equations (1.2.4:3-7) is related to the kinetic energy ob-
tained/released in an exchange with the potential energy in the frame. For example, 
spacecrafts leaving the gravitational interaction with the Earth, like the Pioneer space-
crafts, continue to have a kinematic velocity relative to the Earth but not velocity related to 
the exchange with the gravitational energy due to the Earth. 
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BOX 1.2.4-I 

 
In the DU framework, all experiments on the effects of motion and gravitation on 

the frequency of atomic clocks can be explained by equation (1.2.4:3). On the Earth 
and in near space, the frequency fA of a clock A is  

( ) ( ) ( ) 2 2

, , ,0,0,
1 1 1A Earth A Earth A EquipmentEarthA β δ

f f δ β β= − − −  (1.2.4:10) 

where f(0,0)Earth is a hypothetical reference clock (δ0,Earth=β0,Earth=0) in the Earth gravita-
tional frame. Factors δA,Earth and βA,Earth are the gravitational and velocity factors of 
clock A in the Earth gravitational frame, respectively, and βA,Equipment the velocity factor 
of the clock in a possible equipment frame. An equipment frame may be an accelera-
tor or centrifuge which are closed systems where the clock is given the local kinetic 
energy. The frequency of a reference clock B in the same equipment as clock A is  

( ) ( ) ( ) 2 2
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The frequency of clock A is related to the frequency of the reference clock as  
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The frequency fB(δ,β) of the reference clock B can be related to the frequency con-
sistent with International Atomic Time (TAI) and the SI second by relating clock B to 
the frequency fSI of a reference clock  at the Earth geoid (see Section 5.7.2) (at the 
poles the rotational velocity of the Earth is zero; the frequency of a clock at the geoid 
is determined by the gravitational factor only) 
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where 

( ) ( ) ( ) ( )10

0,0 0,0
1 1 6.977 10SI PolarEarth Earth

f f δ f −= − =  −   (1.2.4:14) 

 
 

All velocities β=v/c in the equations in BOX 1.2.4-I apply equally to linear velocities and rotational 
velocities. Acceleration does not affect the ticking frequency of an atomic clock. In the DU framework, 
this is obvious because the characteristic frequency of atomic emitters is a function of the energy states of the 
oscillating electrons – not a function of an external force on the atom.  
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Clocks in the Earth gravitational frame 

Most “clock experiments” for testing general relativity are performed in the Earth 
gravitational frame which allows the use of the Schwarzschild solution of the GR field 
equations. In the GR framework the rest energy of a mass object is constant anywhere in 
space; the effects local gravitation and motion are explained as consequences of the dif-
ferent flow of time in different frames of reference. According to Schwarzschild’s solu-
tion, the proper time dτ experienced by a clock at a state characterized by gravitational 
factor δ (=GM/rc 2 ) and velocity factor β (=v/c) is 

( ) ( )
2 2 4 2 2

0,00,0,

1 1 1 1

2 8 2 2
1 2 1 . . .

β δ
dτ dt δ β dt δ β β δβ δ

 
= − −  − − − − − + 

 
 (1.2.4:8) 

where dt is the coordinate time measured by a hypothetical clock at a state characterized 
by the gravitational factor δ=0 and the velocity factor v/c =0 in the Earth gravitational 
frame. Schwarzschild solution is derived for the proper time around a single mass center 
in otherwise empty space, but it works well enough in the Earth gravitational frame up to 
typical satellite altitudes. 

Equation (1.2.4:8) is the GR counterpart of the DU equation (1.2.4:3), which in a sin-
gle gravitational frame reduces into form 
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In the Earth near space, the difference between the GR and DU predictions in equa-
tions (1.2.4:8) and (1.2.4:9) appears only in the 18th decimal (assuming β 2=δ like in the 
case of circular satellite orbits), which is too small a difference to be detected. 

At extreme conditions like close to black holes, the difference between the predictions, however, is 

dramatic; GR clock stops when 2δ+β 2 → 1, whereas the frequency of a DU clock approaches gradually 

zero when δ or β 2 → 1, which means achieving the critical radius of a black hole or a velocity approach-
ing the local velocity of light. 

Experiments on the effects of motion and gravitation on atomic clocks 

Before the 1970’s, experiments on the time dilation of clocks or characteristic fre-
quency of atomic oscillators were based on observation of electromagnetic radiation 
transmitted from an object moving relative to the observer. In the late 1930’s Ives and 
Stillwell, and in the early 1960’s Mandelberg and Witten measured the effect of motion on 
the wavelength of radiation emitted by fast-moving hydrogen ions 10,11,12. In the 1960’s 
several groups studied time dilation in experiments based on the Mössbauer effect in ab-
sorbers rotated in a centrifuge 13,14,15,16. In 1971, atomic clocks were taken around the 
world in airplanes 17,18. In 1976 a hydrogen maser was sent to the altitude of 10 000 km to 
test the combined effects of motion and gravitation on the frequency of the maser 19,20.  

Figure 1.2.4-1 summarizes some well-known laboratory and near-Earth experiments 
on the effects of motion and gravitation on atomic emitters and clocks. In laboratory ex-
periments, the kinetic energy and velocity of the clock are supplied by the accelerator or 
centrifuge which serve as a local energy frame for the clocks, cases A 10,11,12, and B 13,14,15,16 
in Figure 1.2.4-1.  
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Figure 1.2.4-1. Laboratory and near space experiments for testing the effects of motion and 
gravitation on atomic emitters and clocks. 

A Experiments with hydrogen canal rays emitting blue-green 4861 Å Hβ spectral line. In-
crease of wavelength by factor ½(v/c)2 with increasing velocity v of the emitting ions was 
confirmed. 

B Experiments with Co-57 γ-ray source at the center of a rotating disk and a resonant Fe-57 
absorber at the periphery of the disk. The observed change in the absorption with the rota-
tion speed suggested a change in the peak absorption frequency by factor ½(v/c )2 with the 
increasing velocity v of the absorber. 

C Experiment with Co-57 γ-ray source at the top and Fe-57 absorber at the bottom of a 75 ft 
high tower. The observed gravitational shift corresponded to the difference in the gravita-
tional factor between the top and bottom of the tower in the Earth gravitational frame. 

D Experiment with cesium clocks flown eastward and westward around the world on com-
mercial airplanes. The experiment confirmed that the hypothetical clock with β2=δ=0 in 
the Earth gravitational frame shall be used as the reference for both the airplane clocks and 
the Earth station clock according to equation (1.2.4:6).  

E The frequency of a hydrogen maser in a spacecraft sent up to 10 000 km altitude was mon-
itored via a microwave link to Earth station. The effect of gravitation confirmed the 
GR/DU prediction. The effect of the velocities of the spacecraft and the Earth station was 
reported as a confirmation of special relativity. A detailed analysis showed that the appar-
ent match with the special relativity prediction was due to an extra term resulting from the 
two-way Doppler cancellation signal used in the experiment. Corrected analysis showed 
full match with the GR/DU predictions, in accordance with equation (1.2.4:6). 

F The Global Positioning System serves as a modem high accuracy test for the effects of 
motion and gravitation on atomic clocks. The prediction of equation (1.2.4:6) is confirmed. 
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Laboratories housing a local frame move at the same velocity at the same gravitational 
state as the local frames, which means that the state of rest in the laboratory is equal to 
the state of rest in an accelerator or centrifuge frame in the laboratory. The parent frame 
to each accelerator or centrifuge frame is the Earth gravitational frame. The state of mo-
tion and gravitation of each accelerator or centrifuge in the Earth gravitational frame is 
determined by the altitude and location of the laboratory.  

An accelerator on the 5th floor of a laboratory is at higher gravitational potential than 
an accelerator on the basement floor. Accordingly, the frequencies of the reference clocks 
of the accelerators are different, but the effects of the motion in the accelerators relative 
to the local reference of each accelerator are the same. 

The effect of gravitation on the energy of γ-ray radiation was first time demonstrated 
over a 75 feet vertical path in the Jefferson Laboratory, case C 21,22,23 in Figure 1.2.4-1. In 
the GR framework, the gravitational potential does not affect the emission energy of the 
radiation source. The increase of the energy of the radiation propagating down from the 
top of the measuring tower, the gravitational blueshift, was explained as an effect of grav-
itational acceleration on the radiation.  

In the DU framework, the velocity of light and the rest energy, and consequently the 
emission energy and the emission frequency of the source S1 at a higher gravitational po-
tential at the top of the measuring tower are higher than the velocity of light and the 
emission energy of a reference source S0 at the basement level. The wavelength of the 
emitted radiation is independent of the gravitational factor δ because the emission fre-
quency and the velocity of light depend on gravitational potential in the same way  
λ=c (1−δ)/f (1−δ) =c/f. On the way down, the frequency of the radiation is conserved, 
but the velocity of light is decreased which means that also the wavelength of the radia-
tion is decreased λ=c(1−δ)/f, which is observed as gravitational blueshift.  

Gravitational potential affects the rest energy and the characteristic frequency of atomic emitters via the 
local velocity of light. Radiation propagating from one gravitational potential to another conserves its fre-
quency and the energy carried by a cycle. The wavelength of radiation propagating in changing gravitation-
al potential changes in direct proportion to the local velocity of light.  

The effect of gravitational potential on the characteristic frequency of atomic oscilla-
tors can be confirmed with modern atomic clocks showing the cumulative reading of 
elapsed time.  

Airplanes and satellites move in the Earth gravitational frame, where the effect of mo-
tion and gravitation on atomic clocks is compared to a hypothetical clock with β2=δ=0 in 
the Earth gravitational frame. This was first time confirmed with cesium clocks flown 
around the world on commercial airplanes in 1971, case D 17,18,24 in Figure 1.2.4-1.  

The experiment confirmed that after the roundtrip the reading of the clock flown 
eastward was lower than the reading of the clock flown westward. The difference was due 
to the rotational velocity of the Earth that, in the Earth gravitational frame added the ve-
locity of the airplane flying to the east and reduced the velocity of the airplane flying to 
the west, respectively. 

Case E 19,20 in Figure 1.2.4-1 refers to the test with hydrogen maser launched to an alti-
tude of 10 000 km altitude in a nearly vertical trajectory. The test was reported to confirm 
that the gravitational shift of the maser frequency follows the prediction of the general 
theory of relativity at the level of 70·10—6. The effect of velocity on the frequency shift 
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was reported as the second-order Doppler effect of special relativity based on the relative 
velocity between the spacecraft and the receiver at the Earth station 
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where re and rs are the distances to the barycenter of the Earth from the Earth station and 
the spacecraft, respectively. Velocities βs and βe are the velocities of the Earth station and 
the spacecraft in the Earth gravitational frame (ECI frame), respectively. 

The theory given as the reference, suggested the prediction based on the velocities of 
both the spacecraft and the Earth station in the Earth gravitational frame like in case D 
of Figure 1.2.4-1. A detailed analysis 25 shows that the apparent match with the special 
relativity prediction is due to an extra term resulting from the two-way Doppler cancella-
tion signal used in the experiment. The corrected analysis shows full agreement with the 
general DU prediction in equation (1.2.4:6) approximated as 
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in agreement with the corresponding approximation of the GR prediction (1.2.4:8). Equa-
tion (1.2.4:6) is confirmed in all tests between Earth satellites and Earth stations like the 
Global Positioning System, which serves as a modem high accuracy test for the effects of 
motion and gravitation on atomic clocks, Case F.  

The system of nested energy frames is a central feature of the DU. It describes the energy structure of 
space and produces a quantitative expression for the locally available rest energy. Motion in a local energy 
frame is related to the state of rest in the frame where the motion and the related kinetic energy is ob-
tained. The motion of the local frame in its parent frame is related to the state of rest in the parent frame, 
etc. The gravitational state in a local frame is related to the state of gravitation in the particular location 
in the parent frame as it were without the local gravitational frame.  

The system of energy frames conveys the relativity of observations in terms of locally available energy 
that determines the frequencies of atomic oscillators and the rate of essentially all physical processes. The 
system of nested energy frames means a full replacement of observers’ inertial frames of reference applied in 
the theory of relativity. Also, it means the cancellation of the principle of relativity. 

1.2.5 Propagation of light 

The apparent constancy and the independence of observer’s motion of the velocity of 
light in the late 19th century was one of the early signs of imperfections in Newtonian 
physics. James Clerk Maxwell proposed world ether26 as the media for the propagation of 
electromagnetic radiation. The world ether was not recognized in spite of several at-
tempts in the 1880s 27,28 – on the contrary, the experiments indicated that the velocity of 
light is independent of observer’s velocity; the orbital velocity of the Earth did not sum 
up to the velocity of light as suggested by the world ether theory.  
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The Michelson–Morley experiment 

The best known and historically most important attempt to determine the velocity of 
the Earth in an assumed “world ether”, the Michelson–Morley experiment, was based on 
a comparison of phase angles in light beams parallel and perpendicular to the assumed 
velocity of the Earth in the world ether 29. Neither the size of the Milky Way nor its rela-
tion to other galaxies or the velocity of the Sun in the Milky Way was known at the time 
of the experiment. Accordingly, it was supposed that the velocity of the interferometer 
frame relative to the ether would be about 30 km/s, the velocity of the Earth in its plane-
tary orbit around the Sun.  

Given the limits of accuracy of the classical instruments, the zero result in the original 
Michelson–Morley experiments meant that the velocity of the interferometer frame was 
zero or at least less than 5 km/s. The rotational velocity of the Earth, which is below 400 
m/s at European latitudes, was thus more than an order of magnitude too small to be 
detected. The sensitivity obtained with a classical Michelson–Morley interferometer by 
Georg Joos in 1930, a phase resolution corresponding to a frame velocity of 1.5 km/s, 
was still not good enough for the detection of a possible effect of the rotational velocity 
of the Earth 30. Many variations of the M–M interferometer was developed to provide an 
improved sensitivity. One approach was the elimination of the rotation of the interfer-
ometer table. The lack of rotation excludes, however, the possibility of detecting the ef-
fect of the rotational motion of the Earth 31,32 .  

There are several variations of the M–M experiment based on masers, lasers, and mi-
crowave cavities in a system on a rotating table 33,34,35. The higher sensitivity of these sys-
tems is based on measurement of the frequency of resonators in different orientations 
relative to the frame velocity. The accuracies of laser and maser interferometers are good 
enough to distinguish the possible effect of the rotational velocity of the Earth; all exper-
iments confirm that the motion of the interferometer with the rotation of the Earth does 
not create interference patterns. An interferometer behaves like an energy object; motion 
in a local frame creates a momentum wave in the local frame and reduces the frequency 
observed in the interferometer frame, which makes it look like a confirmation of the the-
ory of relativity and the relativity principle (Section 5.3.2). 

M-M experiment in the DU framework 

In the DU framework, the zero-result of the interferometer experiments is a conse-
quence of the linkage of the velocity of light to the local gravitational state and the bal-
ance with global gravitational energy. The effect is illustrated in Figure 1.2.3-4; the motion 
of a local frame “draws” the apparent location of the barycenter of space with the mo-
tion. The motion does not affect the velocity of light observed in the moving frame, but 

it reduces the rest mass by the factor 
21 β−  which, in the case of a resonator, means an 

increase in the wavelength of the resonating waves in the resonator (see Section 5.3.2). 
Atomic size (proportional to the Bohr radius) increases in direct proportion to the rest 
mass which guarantees that a resonator in motion conserves the resonance condition. 
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Sagnac effect 

The theory of special relativity was challenged by the Sagnac effect, a phase shift due 
to rotation between opposite beams in an optical loop. The effect was first observed by 
Harres in 1911 and Sagnac in 1913 36,37. In 1925, Albert Michelson and Henry Gale con-
structed a large optical loop near Chicago and observed the effect of the rotation of the 
Earth as a phase shift between opposite beams in the loop 38. Modern version of optical 
loops are ring lasers used, e.g., as optical gyroscopes.  

 
In the DU framework, the Sagnac effect is a direct consequence of the motion of the receiver resulting 

in an increase or a decrease in the effective length of the signal path and propagation time – from the loca-
tion and time the signal leaves the source to the location and time it reaches the receiver (see Section 7.3.2). 
Figure 1.2.5-1 illustrates the Sagnac effect of a satellite signal.  

Slow transport of clocks 

The term “Sagnac correction” is sometimes used in connection with slow transport of 
clocks in the Earth gravitational frame. In this connection, “slow transport” means that 
the transport velocity of a clock is slow compared to the rotational velocity of the Earth, 
i.e., the transportation velocity gives a small increase or decrease to the effective rotation-
al velocity the clock experiences.  

In the DU framework, the transport of clock means that during the transportation the 
frequency of the clock is affected by the altered states of motion and gravitation due to 

(a) (b) 

 
Figure 1.2.5-1. During the signal transmission from a satellite, the rotation of the Earth re-
sults in displacement drB relative to a stationary receiver on the Earth. Mathematically the 
GR expression is identical with the DU expression (see Section 7.3.2). 
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the transportation, i.e., the gravitational factor and the velocity factor are functions of 
time. During the transportation of a clock in the Earth gravitational frame, the transpor-
tation velocity is added to the rotational velocity of the Earth (as a vector sum), and the 
gravitational factor is corrected with the transportation altitude. The cumulative count of 
cycles during transportation is 

( ) ( )
2 2

1
Δ 1 1

t

A
t

N f δ t β t dt= − −    (1.2.5:1) 

The change of the frequency of a clock during slow transportation of a clock at a con-
stant altitude and constant speed eastwards can be approximated as  
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where v = vrot is the velocity due to the rotation of the Earth at the local latitude, and dv 
=vtr the transport velocity vtr<<c (positive in the east-west direction). The extra reading of 
the clock is 
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By expressing the transportation distance as longitudinal angle and the velocity of 
Earth’s rotation as angular velocity equation (1.2.5:3) obtains the form 
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which gives the cycles “lost” when transporting an atomic clock towards the east by ψ 
degrees at latitude θ, Figure 1.2.5-2. Equation (1.2.5:4) states the mathematical equality of 
the slow east-west transport of a clock and the Sagnac delay of light through longitudinal 
angle ψ at latitude θ over links following the surface of the earth. The physical mechanism 
of the delay in the reading of the clock, however, is different from the mechanism of the 
delay in the electromagnetic signal.  
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Figure 1.2.5-2. Clock transportation by longitudinal angle ψ from 
point A to B at latitude θ. The delay due to the additional (slow) 
velocity is mathematically identical to the Sagnac delay of light 
transmission from point A to B (through links following the sur-
face of the Earth at the same latitude) 
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1.2.6 Observables in a local gravitational frame  

Perihelion advance 

An explanation for the 43 arc second/century difference between the observed and 
predicted perihelion advance of the planet Mercury was a foreseeable prove of general 
relativity more than a year before the completion of the theory of general relativity. The 
missing 43 arc second/century was known since mid 19th century upon observations and 
analysis by the French astronomer Urbain Le Verrier who was able to explain 532 arcsec-
onds out of the observed 575 arc seconds as the gravitational interaction of the other 
planets. 

The GR prediction for the perihelion advance, or main axis rotation, is derived from 
the Schwarzschild solution of the GR field equations. The solution conserves the diame-
ter of the orbit in the direction of the original main axis used as the initial condition and 
creates an extended axis serving as the main axis of the rotated orbit, showing the perihe-
lion advance, Figure 1.2.6-1(a).  

When solved for a single period, the increase of the main axis is small and omitted as a 
second order effect 39,40,41. However, in the solutions presented, the deformation of the 
orbit is catastrophic and leads to the escape of the orbiting object when the perihelion 
advance exceeds 45 degrees.  

Applying the GR solution of the main axis rotation to orbits in a high gravitational 
field near the critical radius, the catastrophic deformation of the orbit occurs in a single 
period, Figure 1.2.6-2 (a,b). In Schwarzschild space, all orbits, including circular orbits are 
unstable at radii smaller than three times the Schwarzschild critical radius equal to six 
times the DU critical radius. 

 

(b) There are no cumulative terms in the DU pre-
diction. The second term results in a small pertur-
bation to the elliptic orbit 
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Figure 1.2.6-1. The development of the orbit of Mercury in about 0.5 million years. (a) The prediction de-
rived from Schwarzschild’s solution of general relativity. Essentially identical solutions are found in other 
textbooks. (b) The prediction given by the Dynamic Universe. 
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The reason for the instability can be traced to the equivalence principle that requires 

the buildup of relativistic mass equally in the buildup of kinetic energy at constant gravita-
tional potential and in free fall in a gravitational field. In the SR/GR framework, relativ-
istic mass is a property velocity and the associated coordinate transformations, whereas in 
the DU framework, kinetic energy of free fall is obtained against reduction of the local 
rest energy and the velocity of light due to tilting of space, which means that the total en-
ergy of the object is not changed, Figure 1.2.6-3.  
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The buildup of kinetic energy at constant gravitational potential requires insertion of 
extra energy like Coulombian energy 
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Figure 1.2.6-3. (a) Kinetic energy in free fall is obtained against a reduction of the local rest mo-
mentum via tilting of space. (b) At constant gravitational potential kinetic energy is obtained by 
insertion of excess mass. 

0 ΔkinE c m c=

 (a) (b) (c) 
Figure 1.2.6-2. The development of elliptic orbit with gravitational factor r/rc = 20 and eccentricity e = 0.5 
near a black hole. Like in the case of Mercury, the orbiting object is thrown out of the orbit once the peri-
astron advance reaches about 45 degrees. (a) Schwarzschild’s solution by Berry, (b) Schwarzschild’s solu-
tion by Weber, (c) the Dynamic Universe solution shows stabile orbits down to the critical radius. 
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which in (1.2.6:2) is written in terms of the mass equivalence ΔmEM of Coulomb energy. 
The total energy of a charged object accelerated in Coulomb field receives the energy 
c0ΔmEM c = c0Δmc resulting in the total energy  

( ) ( )0 0Δ ; Δrest kin kinm tot
E E E c m m c E c mc= + = + =  (1.2.6:3) 

which shows the buildup of kinetic energy as the increase of mass, Figure 1.2.6-3(b). In 
the DU framework, combining the effects of inertial and gravitational acceleration, the 
kinetic energy is expressed as  

( )0 0Δ Δ ΔkinE c c m c c m= = +p  (1.2.6:4) 

where the first term means kinetic energy obtained in free fall in a gravitational field and 
the second term kinetic energy via an insertion of mass. 

The difference in the buildup of kinetic energy in the DU and SR/GR frameworks re-
sults in a difference in the predictions for free fall/escape velocity and the orbital velocity, 
which become dramatic in the vicinity of black holes.  

Black hole, critical radius 

At a low gravitational field, far from a mass center, the velocities of free fall as well as 
the orbital velocities in Schwarzschild space and in DU space are essentially the same as 
the corresponding Newtonian velocities. Close to the critical radius, however, the differ-
ences become meaningful. 

In Schwarzschild space, the critical radius is the radius where Newtonian free fall from 
infinity achieves the velocity of light 

( ) 2

2
c Schwd

GM
r

c
=  (1.2.6:5) 

The critical radius in DU space is  

( ) 2

0 0

c DU

δ

GM GM
r

c c c
=   (1.2.6:6) 

which is half of the critical radius in Schwarzschild space. The two different velocities c0 
and c0δ in (1.2.6:6) are the velocity of light in hypothetical homogeneous space and the 
velocity of light in the apparent homogeneous space of the local frame, respectively. 

In Schwarzschild space, the predicted orbital velocity at a circular orbit exceeds the ve-
locity of free fall when r is smaller than three times the Schwarzschild critical radius, 
which makes stable orbits impossible. In DU space, the orbital velocity decreases to zero 
at r = rc(DU), which means that there are stable slow velocity orbits close to the critical ra-
dius, Fig. 1.2.6-4. 

The importance of the slow orbits near the critical radius is that they maintain the mass of the black 
hole. 

The instability of orbits in Schwarzschild space can be traced back to the effect of the 
equivalence principle behind the field equations in general relativity, which assumes 
buildup of relativistic mass in free fall in a gravitational field. 
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 According to the DU analysis, there is no source of mass to result in an increase of 

mass in free fall in a gravitational field – the velocity and momentum of free fall are ob-
tained against a reduction of the local velocity of light and rest momentum. Due to the 
decreasing orbital velocity close to the critical radius in DU space, the orbital period has a 

minimum at r = 2rc(DU) . In Schwarzschild space, the prediction for the orbital period at 

circular orbits apply only for radii r > 3rc(Schwd).  
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Figure. 1.2.6-5. The predictions in Schwarzschild space and DU space for the period (in minutes) 

of circular orbits around Sgr A* in the center of Milky Way. The shortest observed period is 16.8  
2 min which is close to the minimum period of 14.8 minutes predicted by the DU. The minimum 
period predicted for orbits for a Schwarzschild black hole is about 28 minutes, which occurs at r = 

3rc(Schwd) = 6rc(DU). A suggested explanation for the observed “too fast” periods is a rotating black 
hole referred to as the Kerr black hole. 
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Figure 1.2.6-4.  a) The velocity of free fall and the orbital velocity at circular orbits in Schwarz-
schild space. b) The velocity of free fall and the orbital velocity at circular orbits in DU space. The 
velocity of free fall in Newtonian space is given as a reference. In DU space, the slow orbits close 
to the critical radius maintain the mass of the black hole. 
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The black hole at the center of the Milky Way, the compact radio source Sgr A*, has 

an estimated mass of about 3.6 million times the solar mass which means Mblack hole  

7.21036 kg, which in turn means a period of 28 minutes as the minimum for stable orbits 

in Schwarzschild space. The shortest observed period at Sgr A* is 16.8  2 min 42 which is 

very close to the prediction for the minimum period 14.8 min in DU space at r = 2rc(DU) , 
Figure 1.2.6-5. 

In DU space, the velocity of free fall reaches the local velocity of light when the tilting 

angle of space is 45, which occurs at r0δ  3.414 rc . We may assume that such a condi-
tion is favorable for the matter-to-radiation and elementary particle conversions.  

Orbital decay 

Gravitational radiation has gained substantial attention after the reported observations 
of gravitational waves by the LIGO and Virgo Collaboration in 2016. In the GR frame-
work, gravitational radiation is emitted by a changing quadrupole moment of an orbiting 
system. The energy released from the system results in a decrease in the orbital period.  

The GR prediction for the orbital decay of a binary system is 43,64,65 
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 (1.2.6:7) 

In the DU framework, the decay of the period of an elliptic orbit can be seen as a 
consequence of the periastron rotation and the related rotation of the orbital angular 
momentum in the fourth dimension, Figure 1.2.6-6(a). Interestingly, the prediction de-
rived from the rotation of the 4D orbital angular momentum (see Section 4.2.9) gives 

 (a) (b) 

Figure 1.2.6-6.(a) The 4D angular momentum Lorbit of an eccentric orbit, in the direction of the Imδ 
axis of the orbital plane, rotates with the periastron advance of the obit. The energy released in the 
decay of the orbital period is assumed as the energy needed for the rotation of the angular mo-
mentum (see Section 4.2.9). b) The eccentricity factor of the decay of binary star orbit period. At 
the eccentricity e = 0.616 of the PSR 1913+16 orbit the eccentricity factor in the GR and DU pre-
diction is essentially the same and lead to the same prediction for the decay. 
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essentially the same prediction as the GR prediction (1.2.6:7)  
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 (1.2.6:8) 

The only difference between the two predictions comes from the eccentricity factor 
(the factor in parenthesis in front of the mass term at the end). In the GR prediction, the 
eccentricity factor is presented as a serial approximation and, in the DU prediction, in 
algebraic form. As illustrated in Figure 1.2.6-6(b), the eccentricity factor in the DU pre-
diction goes to zero at zero eccentricity but saturates to the value 1 in the GR prediction. 
At the eccentricity e = 0.616 of the PSR 1913+16 orbit the eccentricity factor in the GR 
and DU prediction is essentially the same and lead to the same prediction for the decay, 
Figure 1.2.6-7. The possible energy radiation by the rotating 4D angular momentum in 
the DU has not been analyzed. 

Shapiro delay 

In the DU framework, the propagation of light near mass centers is affected both by 
the reduced velocity of light and the lengthening of the propagation path due to the ge-
ometry of the fourth dimension. The resulting delay in the propagation time is referred to 
as the Shapiro delay. In the GR framework, Shapiro delay is explained in terms of delayed 
time and lengthened space distance in tilted space-time. The comparison of GR and pre-
dictions in Section 5.4.2 shows that the GR prediction can be expressed as the sum of 
two identical terms, one due to the lengthening of the propagation path and the other due 
to the delay of time  

  , 3 3

Δ Δ

Δ ln lnB B B B
A B

A A A Apath time

x r x rGM GM
T

c x r c x r

   + +
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Figure 1.2.6-7. The predicted (solid 
curve) and observed orbital decay 
(dots) of PSR B1913+16 binary pul-
sar. Picture: Wikimedia Commons. 
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The corresponding DU equation is  
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 (1.2.6:10) 

which shows that the DU term Δtime is equal to the Δc term in the GR prediction, but the 
Δpath terms differ by a subtracting factor in the DU prediction. The subtracting factor in 
the DU prediction is due to the fact that tilting of space does not lengthen the tangential 
component of the propagation path but only the radial component pointing to or from 
the mass center.  

The difference between the GR prediction and DU prediction disappears when there 
is no tangential component in the propagation path, i.e., propagation occurs in the radial 
direction — in a direction towards or from the local mass center. Such a situation is due, 
e.g., in experiments, where the Shapiro delay is measured with a two-way radar signal to a 
celestial object.  

A pioneering test of the effect of the curvature of space in the solar system was the 
measurement of the delay of the radio signals to and from the Mariner 6 and Mariner 7 
spacecraft on their way to Mars in 1970 43 . The experiments were performed when the 
spacecrafts were far behind the Sun relative to the Earth, Figure 1.2.6-8. The path of the 
radio signal passes the Sun at a distance which is small compared the distances from the 
Earth and planet Mars to the Sun. In such a case the GR prediction of Shapiro delay 
(1.2.5:5) reduces into form 
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and the DU prediction (1.2.5:6) into form 
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 (1.2.6:12) 

In the Mariner experiments, the Shapiro delay at different conjunction distances was 
compared the theoretical delay at exact conjunction when the signal passes the Sun at a 
distance equal to the radius of the Sun, d = rSun. 
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Figure 1.2.6-8. Measurement of the de-
lay in a radio signal due to the gravita-
tion of the Sun. The delay results from 
two factors: the lengthening of the path 
due to the topography of space in the 
fourth dimension and the reduction of 
the velocity of light near the Sun. 
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Such a relative study eliminates the effect of the constant term –1 in the DU predic-
tion and makes predictions of GR and DU identical. The Shapiro delay of the two-way 
signal to and from the spacecraft at 14.2 light minute distance from the Sun to the Earth 
station at 8.3 light minute distance from the Sun is 250 μs and 230 μs according to the GR 
and DU predictions, respectively. The effect of the actual conjunction distances 3.5·rSun 
and 5.9·rSun, of Mariner 6 and Mariner 7 spacecrafts, respectively, were 50 μs and 70 μs 
shorter than the calculated delay at exact conjunction – both according the GR and DU 
predictions, Figure 1.2.6-9. 

Deflection of light, gravitational lens  

The reduced propagation velocity and increased propagation distance of light and ra-
dio signals close to a mass center mean not only an increase in the propagation time but 
also bending of the propagation path. The prediction for the bending of the light path in 
the DU framework is the same as it is in the GR framework, ψ=4GM/c 2d, where ψ is the 
bending angle, and M the mass center the light beam passes at distance d.  

 

Figure 1.2.6-9. The time delay of a two-way radio signal from Earth to Sun and from Sun to desti-
nation, and in reverse direction back to Earth. The curves are based on equation (1.2.6:12). 
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1.3 Cosmological considerations 

1.3.1 The linkage of local to the whole 

Space as the 3D surface of a 4D sphere is a basic assumption in the Dynamic Uni-
verse. It is a philosophical choice as a natural geometry for closing the 3D space. Spheri-
cally closed space allows a precise solution to the dynamics of space – the contraction-
expansion process that explains the energy buildup in space and produces precise, math-
ematically simple predictions to key cosmological observables – as well as an unbroken 
link between any local phenomenon and space as a whole. Energizing of space does not 
need new physics or assumptions of unknown quantum fluctuations; mass in space gets 
its rest energy as the energy of motion gained against the release of gravitational energy in 
the contraction phase preceding the ongoing expansion phase releasing the energy of mo-
tion back to the energy of gravitation. 

The Dynamic Universe means a major change in the cosmological picture of the uni-
verse. The overall balance of the energies of gravitation and motion means that all gravi-
tationally bound structures like galaxies and planetary systems expand in direct propor-
tion to the expansion of whole space as the 3D surface of a 4D sphere. For example, 2.8 
cm of the 3.8 cm annual increase of the Earth to Moon distance comes from the expan-
sion of space and only 1 cm from the tidal interactions. 

The velocity of light is determined by the velocity of expansion in the fourth dimen-
sion. The expansion velocity slows down gradually due to the work done against the grav-
itational energy of the system. 

Due to the faster expansion velocity in the past, the age of the expanding space corre-
sponding to the present 14 billion lightyears’ estimate of the 4-radius (equal to the Hub-
ble radius, RH=c/H) is about 2/3*14≈9.3 billion years. The length of a year increases in 
direct proportion to the age of expanding space. The length of a day increases in inverse 
proportion to the 4D velocity of space and the velocity of light. The ticking frequency of 
atomic clocks decreases in direct proportion to the 4D velocity and the velocity of light.  

All the above linkages are in an excellent agreement, and necessary for a prediction 
matching the observations on the number of days in a year found in coral fossils and the 
data calculated from observed solar eclipses for the last 3000 years.  

For 4 billion years ago, Earth and Mars were about 30% closer to the Sun as they are 
today which gives a natural explanation to the geological development on the Earth and 
the presence of liquid water on Mars thus providing, e.g., a natural explanation to the 
“faint Sun paradox 44 ”. 

In DU space, predictions derived for cosmological observables obtain precise mathe-
matical forms due to the exact geometry and dynamics of space. Unlike GR based cos-
mology, DU cosmology also produces predictions to the past and future development of 
the expansion, which allows parameter free expressions for the physical and optical dis-
tances as well as for the redshift and power dilution of light observed from cosmological 
objects.  
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1.3.2 Distances in FLRW cosmology 

The Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology was developed in the 
1930s. The 1930s’ cosmologists met an immense challenge in putting together the results 
from special relativity, Friedmann’s and Lemaître’s solutions of the field equations of 
general relativity, the Planck equation, the implications of quantum mechanics, and the 
redshift observations reported by Edwin Hubble. Necessary components for key cosmo-
logical predictions were the distance-redshift relation, the dilution of the power density of 
radiation, and the development of the of the observed angular size of objects in expand-
ing space. In GR space, not only material objects from atoms to stars conserve their di-
mensions in expanding space but also local systems like galaxies and planetary systems 
conserve their dimensions as first concluded by de Sitter 45. The expansion of GR space is 
considered occurring as “Hubble flow” between galaxies or galaxy groups.  

As first proposed by Tolman 46 and later concluded by Hubble and Humason 47,48, de 
Sitter49, and Robertson50, the energy of a quantum is reduced by (1+z) as a consequence 
of the effect of Planck’s equation E = hf as an “energy effect”, a reduction of the “inten-
sity of the radiation” due to reduced frequency. When receiving the redshifted radiation at 
a lowered frequency, a second (1+z) factor was assumed as a “number effect”. Hubble 
considered that the latter is relevant only in the case that the redshift is due to recession 
velocity 51. Tolman was careful and added the reservation “evidently” in his conclusions 
of the distance definition and the effect of Planck’s equation in the derivation of the pre-
diction for the observed luminosity of redshifted objects, Figure 1.3.2-1. The double dilu-
tion (1+z)2 due to redshift has stayed in the FLRW cosmology since 1930’s 52. 

Interpretation of Planck’s equation as an intrinsic property of radiation means that ra-
diation propagating in expanding space loses energy due to the expansion of wavelength 
and the associated decrease of frequency. As discussed in Section 5.1, Planck equation 
should be understood as the energy injected into one cycle of radiation at the emission; 
expanding the wavelength does not change the energy carried by a cycle of radiation, but 
it dilutes the energy received in a unit time. The dilution is observed as the Doppler ef-
fect, which means that expansion is associated with one (1+z) dilution factor only. 

A primary distance definition in FLRW cosmology is the comoving distance, DC, 
which means the physical distance of cosmological objects at the time of the observation. 
The comoving distance is obtained from Friedmann’s solutions of the GR field equations 
(6.2.1:2) 
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where z is the redshift and RH is the Hubble radius RH=c/H0 (H0 is the Hubble constant). 
Due to the reciprocity demand 76 originating from special relativity, the angle an object is 
seen in GR space is the same as it was when the light from the object was emitted. Ac-
cordingly, the angular diameter distance DA is related to the comoving distance as  
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As obvious from (1.3.2:2), the angular size distance increases with the comoving dis-

tance at redshifts z < 1 but turns into shortening when z > 1 and shortens in inverse pro-
portion to z at high redshift z >>1.  

The light-travel distance DLT is expressed 

( ) ( ) ( )
2

Λ

0
1 1( Ω 21 ) Ω

T

m

z

L HD
z

d
R

z z

z

z z
=

+ + + − +
  (1.3.2:3) 

Luminosity distance, DL is the apparent distance corresponding the luminosity ob-
served from a similar object in static Euclidean space, where luminosity decreases in in-
verse proportion to the square of the distance. In FLRW cosmology, the observed power 
density is subject to areal dilution in inverse proportion to the comoving distance squared 
and dilution due to the expansion of space by the factor (1+z)2 related to the Planck 
equation and Doppler effect. The luminosity distance is expressed as 

( ) ( )
2

1 1L C AD z D z D= + = +  (1.3.2:4) 

which allows the classical expression of the power density of the radiation flux  

Doppler effect 

Planck equation 

Figure 1.3.2-1. Estimates of the luminosity in Tolman58. Tolman states that the distance to be used 
is “evidently” the comoving distance, which is the physical distance at the time the observation. 
Also, he states that “evidently” the Planck equation results in an energy loss reducing the luminosi-
ty observed as L =L0/(1+z), which together with the Doppler effect results in L = L0/(1+z)2 at-
tenuation. 

Planck & Doppler 
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The observed power density is compared to K-corrected radiation flux, which in addition 
to correction of instrumental factors, cancels the reciprocity factor by adding an attenua-
tion factor (1+z)2 to the power densities observed in bolometric multi bandpass photom-
etry (see Section 6.3.3).  

Light travel distance or the “lookback” distance, DLT is the distance light has propa-
gated from the object. In principle, for the redshift approaching infinity, the lookback 
distance should give the distance from the Big Bang, Figure 1.3.2-2.  

As shown in Figure 1.3.2-2, differences in the predictions for the defined distances 
appear when redshift z approaches 1 and become remarkable at high redshifts. It is con-
cluded that the sum of the density parameters equals to one (Ω=Ωm+ΩЛ=1) which 
means “flat space” condition. As the present best estimate, the portion of the visible and 
dark matter is Ωm = 0.27 and the portion of the unknown “dark energy” ΩЛ = 0.73. The 
hypothesis of dark energy comes primarily from recent observations of the magnitude 
and redshift of supernova explosions. The present estimate for the Hubble constant is 
about 70 [km/s/Mpc] which corresponds to about 13.7 billion years of age of the ex-
panding FLRW universe. Case (b) in Figure 1.3.2-2 corresponds to presently assumed 
values of the density parameters which makes the lookback distance DLT approach RH at 
high redshifts, DLT = c/T = RH .   
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Figure 1.3.2-2. Central definitions of distances in FLRW-space for three combinations of mass 
density and dark energy. Each case assumes the “flat space” condition which means that the sum 
of the two density parameters is equal to one, Ωm+ΩЛ=1. The Co-moving distance DC, which means 
the physical distance at the time of observation, is obtained from Friedmann’s solution to the field 
equations of the general theory of relativity. The Light-time distance, DLT is the length of the light 
path from the object to the observer in the expanding space. In principle, the Light-time distance 
approaches the Hubble radius RH at very high redshifts that occurs in case (b), which has the cur-
rently preferred values of the density parameters, Ωm=0.3 and ΩЛ=0.7. The Angular size distance DA 
is obtained by dividing the Co-moving distance DC with the expansion factor (1+z ), which means the 
distance of the object at the instant the light is left from the object. The Luminosity distance DL is 
obtained by multiplying the Co-moving distance DC by the expansion factor (1+z ), which gives the 
effect of the increased wavelength on the dilution of the power density. The power density of 
radiation is proportional to the square of the inverse of the Luminosity distance DL. 
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1.3.3 Distances in DU space 

In DU space, the physical distance, corresponding to the comoving distance (1.3.2:1) 
in FLRW cosmology, can be expressed in terms of the separation angle θ seen from the 
4-center of space, or in terms of the redshift, Figure 1.3.3-1  

( ) ( )4 4 1 ln 1θ

phys HD θ R R e R z−=  = − = +  (1.3.3:1) 

The optical distance, referred to as D, is the tangential component, of the propagation 
path from the object to the observer, i.e., the distance light has traveled in the expanding 
space  

( )4 1D R z z= +  (1.3.3:2) 

Luminosity distance is obtained by adding the effect of Doppler dilution to the optical 
distance  

( ) ( )4 41 1 1
L DU

D R z z z R z z= + + = +  (1.3.3:3) 

In DU, the angular diameter of objects is seen at the optical distance.  

 (a) (b) 

Figure 1.3.3-1. (a) The physical distance Dphys is the arc Dphys, at the time of the observation. In 
expanding space, the velocity of light in space (the tangential component of the propagation 
path) is equal to the velocity of space in the direction of the 4-radius, which means that the opti-
cal distance D is equal to the increase of the 4-radius during the propagation of light from the 

object to the observer, 
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 (b) The physical distance Dphys correspond to the comoving distance in FLRW cosmology. Opti-
cal distance D corresponds closest to the light travel distance DLT in FLRW cosmology.   
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Angular size of cosmological objects 

In FLRW cosmology, both stars and gravitationally bound local systems like galaxies 
and quasars conserve their dimensions in expanding space. In DU space, solid objects 
like stars conserve their dimensions, but gravitationally bound systems expand in direct 
proportion to the expansion of space.  

For a non-expanding object with a fixed diameter, ds, the observed angular diameter in 
DU space is 
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and for expanding objects, like galaxies and quasars, with diameter d =d0/(1+z)  
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where θd is the angular diameter of the object, as seen from the 4-center of space. Equa-
tion (1.3.3:5) means a Euclidean appearance of galactic objects. In FLRW space, due to 
the decreasing angular distance at high redshifts, the observed angular size is predicted to 
turn into an increase at high redshifts53, Figure 1.3.3-2(a). As illustrated in Figure 1.3.3-
2(b), the DU Euclidean prediction (1.3.3:5) for the angular size of galaxies and quasars is 
in an excellent agreement with observations. 
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Figure 1.3.3-2. Dataset of the observed Largest Angular Size (LAS) of quasars and galaxies in the 
redshift range 0.001 < z < 3. Open circles are galaxies; filled circles are quasars. In (a) observa-
tions are compared to the FLRW prediction (6.2.1:2) with Ωm= 0 and ΩΛ = 0 (solid curves), and 
Ωm= 0.27 and ΩΛ= 0.73 (dashed curves). In (b) observations are compared to the DU prediction 
(6.2.3:2). 
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The magnitude of standard candle 

In cosmological observations, absolute magnitude, M is defined as the logarithm of its 
luminosity as seen from a distance of 10 parsecs. The magnitude measured by the observ-
er is referred to as the apparent magnitude, m, which is related to the absolute magnitude 
as  
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where DL is the luminosity distance of the object. Apparent magnitude grows in inverse 
proportion to the brightness; the fainter is the object observed the higher is the apparent 
magnitude.  

For comparing objects at different distances, one should assume that the absolute 
magnitudes of the objects are identical. Observations indicate that Type Ia supernovae 
serve as standard candles when corrected by the shape of the light curve and can be used 
to test the predictions for the apparent magnitude. The dilution of the power density of 
radiation from the objects results from areal spreading proportional to the distance 
squared, and from the dilution of power density due to redshift. 

In FLRW cosmology, the spreading distance used in the luminosity distance DL 
(1.3.2:4) is the comoving distance DC. The power dilution affecting the luminosity dis-
tance is (1+z) comprising the effects of Planck equation and Doppler effect.  

In DU cosmology, the spreading distance is the optical distance D (1.3.3:2). The pow-

er dilution 1 z+  affecting the luminosity distance (corresponding to factor (1+z) affect-

ing the luminosity) is due to the Doppler effect. 
In FLRW cosmology, the prediction for apparent magnitude is applied to observa-

tions corrected to “emitter’s rest frame”, which means a 5·log(1+z) increase to the ob-
served bolometric magnitudes (Sections 6.3.3 and 6.3.4)  
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In DU cosmology, the apparent magnitude for bolometric observations is 
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A major difference in the predictions is that the FLRW prediction applies to magnitudes corrected 
with a K-correction including instrumental factors + conversion to “emitter’s rest frame” which brings 
5∙log(1+z) addition to the observed bolometric magnitudes, whereas the DU prediction applies to the 
observed bolometric magnitudes corrected with the instrumental factors only. 

The conversion of the bolometric magnitudes to emitter’s rest frame in FLRW cos-
mology is related to the reciprocity demand with its origin in the principle of relativity. 
The effect of the K-correction is analyzed in detail in Section 6.3.4.  
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In a comparison with the DU prediction based on the DU optical distance and the 
omission of the “Planck dilution”, the extra 5∙log(1+z) term in the FLRW magnitude 
prediction comes from the areal dimming due to the comoving distance and the “Planck 
dilution”, each resulting in an extra (1+z) dimming factor.  

The DU prediction (1.3.3:8) equal to (6.3.3:10) shows an excellent match to direct bo-
lometric observations of Ia supernovae as illustrated in Figure 6.3.3-3 in Section 6.3.3. In 
Figure 6.3.3-3 (a) and (b), the DU equation (6.3.3:10) has been applied to produce predic-
tions for the magnitudes observed in each filter for hypothetical blackbody sources at 

8300 K and 6600 K and compared the predictions to observed magnitudes of Ia super-
novae (c) 54.  

To make the DU prediction of apparent magnitude comparable to the FLRW predic-
tion and the K-corrected magnitudes an extra 5∙log(1+z) term is added to (1.2.6:13) 
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Equation (1.2.6:14) gives an excellent match to supernova Ia observations corrected 
with the K-correction required by the FLRW prediction, Figure 1.3.3-3 (equal to Figure 
6.3.4-4). The FLRW prediction in Figure 1.3.3-3 applies Ωm =0.31 and ΩΛ=0.69 as the 
density parameters. 
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Figure 1.3.3-3. Distance modulus μ = m – M, vs. redshift for Riess et al. “high-confidence” dataset 
and the data from the HST. 
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1.3.4 The length of a day and a year  

A unique possibility for studying the long-term development of the Earth’s rotation 
comes from paleo-anthropological data available back to almost 1000 years in the past. 
Fossil layers preserve both the daily and annual variations, thus giving the number of days 
in a year. At least partly, tidal variations can also be detected, which allow an estimate of 
the development of the number of days in a lunar month 55,56,57. Reference material from 
the past 2700 years is available from ancient Babylonian and Chinese eclipse observa-
tions58,59. The average lengthening of a day based on the eclipse observations is 1.7–1.8 
ms/100y, which is about 0.6 ms/100y less than the estimated effect of tidal friction (2.3–
2.5 ms/100y). The length of a day has been measured with atomic clocks since 1955. 
Since 1988, the length of a day has been monitored by The International Earth Rotation 
and Reference Systems Service (IERS). Monitoring is based on atomic clocks and Very 
Long Base Interferometry (VLBI). In the time interval 1962–2018, the long-term trend is 
hidden by the short-term variations 60. 

According to current theories, planetary systems do not expand with the expansion of 
space, and atomic clocks conserve their frequencies. It means that the length of a year is 
assumed unchanged, and the length of a day is affected only by tidal interactions with the 
Moon and Sun.  

In the DU framework, planetary systems expand in direct proportion to the expansion 
of space and the frequency of atomic clocks slows down in direct proportion to the de-
crease of the velocity of light. As a consequence, the length of a year, the length of a day, 
and the frequency of atomic clocks change with the expansion of space, Table 1.3.4-I. 

 GR, FLRW cosmology Dynamic Universe 

The length of a year Constant Increases with the expansion 

y ~ t 

The length of a day Increases due to tidal friction 

 

Increases due to tidal friction 

+ increases with the expansion  

d ~ t 1/3 

The frequency of atomic 
clocks 

Constant Decreases with the expansion  

as f ~ t –1/3 

Table 1.3.4-I. The predicted change of the length of a year, the length of a day, and the frequency 
of atomic clock with the expansion of space expresses in terms of the time from the singularity, t.  

Figure 1.3.4-1 illustrates the development of the length of the year (in current days) 
and the number of days in a year during the last 1000 million years. The number of days 
given by equation (7.4.2:9) in Section (7.4.9 follows well the development of the number 
of days in a year counted in fossil samples since almost one billion years back. The esti-
mate based on the tidal effect only shows too high a change but when corrected with the 
lengthening of a year a perfect match with the coral fossil data is obtained. 

 Experimental values, shown as squares in the figure have been collected from papers 
comprising coral fossil data 56,57,58 and stromatolite data from the Bitter Springs For-
mation61 (the data from the samples going back to more than 800 million years). In all 
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data points in Figure 1.3.4-1, the DU correction in the age estimate is made according to 
equation (6.4.3:10).  

The predicted 1.9 ms/100y lengthening of a day, taking into account both the tidal 
friction and the lengthening of a year, is in a good agreement both with the coral fossil 
data and the data calculated from the solar eclipse observations.   

1.3.5 Timekeeping and near space distances 

SI Second and meter 

In Dynamic Universe, all processes in space are linked to space as the whole. All 
gravitationally bound systems expand in direct proportion to the expansion of space. All 
velocities in space and rates of physical processes are related to the velocity of the expan-
sion, and consequently, to the velocity of light.  
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Figure 1.3.4-1. The development of the length of a year in current days, and the number of days in 
a year according to the DU predictions (5.6.3:5) and (5.6.3:9) respectively. The squares are ob-
served counts of the number of days in a year in fossils [83–86]. The dashed line is the prediction 
based on tidal effects of the Moon and the Sun, 2.5 ms/100y. The age data of the fossils are based 
on radiometric dating, which has been adjusted according to equation (6.4.3:8) for the faster decay 
rate in the past. In the oldest data, 850 million years by linear decay, the correction is 13 million 
years, i.e., about 1.5 %. 
 

Tidal friction  

2.5 ms/100y 
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Figure 1.3.5-1. The effect of the annual changes in the orbital velocity and gravitational state of the 
Earth in the Solar gravitational frame on clocks and the SI second on the Earth.  

In present timekeeping, the unit of time, the SI Second, is based on the frequency of 
radiation from the transition between two hyperfine levels of the ground state of the ce-
sium-133 atom on the Earth geoid. The meter is defined as the length of the path trav-
eled by light in a vacuum in 1/299 792 458 seconds (Section 5.7).  

The velocity of light is a function of the gravitational potential – on the Earth geoid at 
the equator the velocity of light is higher than it is on the geoid at the poles. The frequen-
cy of Ce clock, however, is the same at the poles and the equator due to the compensat-
ing effect of the rotational velocity. As a consequence, in absolute measures, the SI meter 
is longer at the equator than it is at the poles. Due to the effect of velocity on the Bohr 
radius, also atoms and material objects are larger at the equator. In SI meters, the histori-
cal platinum rod standard of a meter, as well as all material objects, conserve their dimen-
sions on the Earth geoid at all latitudes. 

Due to the eccentricity of the Earth orbit, the length of the SI second, like the rates of 
all physical processes on the Earth are subject to annual variation due to the variation of 
the orbital velocity and the gravitational state of the Earth in the Solar gravitational frame. 
At the perihelion, the clock runs slow, at aphelion fast, Figure 1.3.5-1. The effect is not 
observable on the Earth because the frequencies of all clocks change in parallel. Earth SI 
second works well as a practical standard on Earth and in near space. 

Annual variation of the Earth to Moon distance 

The Earth to Moon distance has been measured with high accuracy in the Laser Rang-
ing Program 72. The measurement is based on the two-way transmission time of a light 
pulse from the Earth to a reflector on the Moon and back to the Earth. Due to the eccen-
tricity of the Earth orbit around the Sun, the ticking frequency of the clock used in the 
measurement of the light propagation time as well as the velocity of light change during 
the year. At the perihelion, the clock frequency is decreased by both the increased orbital 
velocity and the decreased solar gravitational potential which also decreases the velocity 
of light. At the perihelion, the distance to the moon is increased. At the aphelion, the 
changes are opposite. Putting all the changes together we enter into a null result; there is 

Sun 

Earth at 
perihelion: 
clock slow 

Earth at 
aphelion: 
clock fast 

SI sec = (1+1.31∙10–11)∙SI sec(average) 

SI sec(average) 

SI sec = (1–1.31∙10–11)∙SI sec(average) 
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no observable variation in the Earth to moon distance due to the eccentricity of the Earth 
orbit. The total variation in the clock frequency, the velocity of light, and the Earth to 
Moon distance between perihelion and aphelion can be listed as follows (Section 5.6.1):  

 

Change of the Earth clock frequency ΔF =Δf/f  = 2gSun ΔrSun /c 2 

Change of the velocity light ΔC=Δc/c = gSun ΔrSun /c 2 

Change of the Earth-Moon distance     ΔR = ΔrE-M/rE-M = –gSun ΔrSun /c 2 

Actual change of the signal propagation time     ΔT =ΔR–ΔC = Δt/t  = –2gSun ΔrSun /c 

Change in the observed signal propagation time   ΔN/N = ΔF +ΔT = 0 

 
In the list, gSun is the gravitational acceleration of the Sun at the Earth-Moon system. 

ΔrE-M and ΔrS-E are the differences in the Earth to Moon and the Sun to Earth distance, 
respectively. The actual decrease ΔT of the propagation time of the Earth-Moon-Earth 
signal from perihelion to aphelion is fully compensated by the corresponding decrease of 
the clock frequency ΔF, which means that no change is observed – which is confirmed in 
the Laser Ranging Program. The actual, undetected variation of the Earth to Moon dis-
tance due to the eccentricity of the Earth orbit is 12.6 cm.  



70 The Dynamic Universe 

 

1.4 Summary 

1.4.1 Hierarchy of physical quantities and theory structures 

The postulates 

Due to the empirically driven evolution in its different areas, and the lack of a holistic, 
metaphysical basis, the development of contemporary physics has led to diversification, 
with specific postulates in different areas. The postulates behind relativity theory and 
quantum mechanics are listed in the corresponding boxes in Figure 1.4.1-1.  

The main postulates in the Dynamic Universe are the spherically closed space, the ze-
ro-energy balance of motion and gravitation, and the use of time and distance as universal 
coordinate quantities. The DU postulates are defined at the base level, and they apply as 
such in all areas of physics and cosmology. 

The force-based versus energy-based perspective  

Figure 1.4.1-1 compares the hierarchy of some key quantities and theory structures in 
contemporary physics and the Dynamic Universe.  

Contemporary physics, as it is today, can be seen as the result of the experimentally 
driven evolutionary development of our understanding of the observable physical reality. 
The turn from metaphysical conception to systematic scientific progress can be attributed 
to Isaac Newton who, in the late 1600’s, defined the concepts of mass and force and es-
tablished the mathematical expressions for the primary interactions of gravitation and 
motion. Implicitly, Newton’s equations define time and distance as coordinate quantities 
common to all events in space. Newton’s second law can be seen hiding an assumption 
of infinite Euclidean space; according to the second law, the velocity of an object increas-
es linearly, without limits, as long as there is a constant force acting on an object. Newto-
nian physics is local by its nature; phenomena are studied in a local frame of reference 
where Newton’s laws of motion and gravitation apply.  

Over time, mismatches began to develop between theory and observations. The theo-
ry of relativity was needed to add effects of finiteness to the unlimited Newtonian space 
and to match the contradictions seen in electromagnetism between local frames in relative 
motion. Finiteness was introduced via modified metrics, which replaced the Newtonian 
universal coordinate quantities by the concept of space-time. Like Newtonian physics, 
relativistic physics is local by its nature. Newtonian empty space is replaced by a continu-
ous field. Energy differences are calculated by integrating the force field.  

The ultimate goal of the field concept is a unified field theory combining the four 
fundamental forces – strong interaction, electromagnetic interaction, weak interaction, 
and gravitational interaction – identified in contemporary physics. 

In the DU, the hierarchy of force and energy is opposite to that in contemporary 
physics. Energy is a primary quantity. Force in the DU is defined as the gradient of ener-
gy, which shows a tendency toward minimum energy in an energy system. 
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Figure 1.4.1-1. Hierarchy of some central physical quantities and theory structures in 
contemporary physics and Dynamic Universe.  
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In the GR, gravitational force is conveyed at the velocity of light by hypothetical 
gravitons. In the DU, gravitational force is local and immediate; it results from the ten-
dency towards minimum potential, the actualization of the potentiality. Gravitational 
force is proportional to the gradient of the local gravitational potential. In the DU, the 
gravitational field is a scalar potential field. 

 

The balance of gravitation and motion 

In the Dynamic Universe framework, gravitational energy is understood as the poten-
tial energy energizing the contraction process building up the rest energy as the energy of 
motion in the fourth dimension. The rest energy of matter is equal to the gravitational 
energy released.  

DU space is characterized as the zero-energy continuum with the energies of motion and gravitation in 
balance. 

The buildup of local structures within space is studied by conserving the overall zero-
energy balance in space. Such an approach leads to a system of nested energy frames. 
Relativity appears as a consequence of the conservation of the total energy is the system. 
The “lower” we are in the chain of energy frames the smaller is the energy available for 
local transactions.  

Relativity in the DU is expressed in terms of locally available energy. Relativity does not need addi-
tional postulates; it is a direct consequence of the conservation of total energy in space, and an indivisible 
part of the overall energy balance in space. Relativity in the DU means relativity between the local and the 
whole. Any local state is related, via the system of nested energy frames, to the state of rest in hypothetical 
homogeneous space, which serves as the universal frame of reference.  

Starting from energy, instead of force, is essential for the holistic approach in the Dy-
namic Universe. The rest energy obtained in the contraction-expansion process serves as 
the source of energy in all local structures and expressions of energy. The buildup of ele-
mentary particles and mass centers in space means that certain part of the momentum in 
the fourth dimension is turned toward space directions. As a consequence, the rest energy 
available in local structures becomes a function of the local gravitational environment and 
the local motion in space. The reduced rest energy reduces the rate of physical processes, 
e.g., the characteristic emission and absorption frequencies of atomic objects become 
functions of the state gravitation and motion of the object. 

All local expressions of energy, like kinetic energy, Coulomb energy, and the energy of 
electromagnetic radiation are derivatives of the local rest energy. The energy of a quan-
tum of radiation is derived from Maxwell’s equations as the energy injected into a cycle of 
electromagnetic radiation by a single electron transition in the emitter. Localized mass 
objects in space can be described as resonant mass wave structures. Mass is characterized 
as the wavelike substance for the expression of energy. 

Time and distance are basic quantities for human comprehension. Human orientation 
relies on definite time and distance – in the Dynamic Universe framework, time and dis-
tance are referred to as coordinate quantities and are the same for all observers, at any 
location at any moment. The rates of physical events and processes as well as the dimen-
sions of physical structures, however, are dependent on the local energy balance in space. 
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1.4.2 Some fundamental equations 

The velocity of light 

In Dynamic Universe, the velocity of light is not constant. The velocity of light is 
equal to the velocity of space in the fourth dimension determined by the balance of the 
energies of motion and gravitation in space. In hypothetical homogeneous space the ve-
locity of light, c0 is  

2

Σ 0 Σ 4 0 4" "M c GM M R c GM R=  =  (1.4.2:1) 

where MΣ is the total mass in space, M” the mass equivalence of the total mass, R4 the 4-radius of space, 
and G the gravitational constant. The velocity of light decreases with the expansion of space the increasing 
4-radius R4 (see Section 3.3). 

The rest energy of matter 

Perhaps, the most famous equation in physics is the rest energy of matter  

2E mc=  (1.4.2:2) 

In the DU, the rest energy obtains the form 

0E c mc=  (1.4.2:3) 

where c0 is the velocity of light in hypothetical homogeneous space determined by the 
current expansion velocity of space, and c is the local velocity of light ( in the Earth gravi-
tational frame c is estimated c ≈ 0.999999·c0 ). Mass m and velocity c are functions of the 
local state of motion and gravitation 

( )2

0 0

0 0

1 ; 1
n n

i i

i i

m m β c c δ
= =

= − = −   (1.4.2:4) 

where m0 is the mass of the object at rest in hypothetical homogeneous space, βi=vi/ci is 
the velocity vi relative to the local velocity of light in the i:th frame, δi=GMi/ric0i

2 the gravi-
tational factor in the i:th frame at distance ri from the local mass center Mi (see Section 
4.1.4). 

The DU form of the rest energy conveys central relativistic effects in absolute time 
and distance that are used as universal coordinate quantities natural for human compre-
hension. 

The total energy of motion  

Motion and momentum in space are associated with the velocity and momentum due 
to the motion of space, the expansion of the 4D sphere in the fourth dimension. The rest 
energy is the energy related to the motion of space in the fourth dimension; it is ex-
pressed as the imaginary component of the complex total energy of motion 

( )¤ ¤

0 0 0 0mE c c mc c c mc= = + = +p p i p i  (1.4.2:5) 
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In the complex quantity presentation of (1.4.2:5), momentum p¤ is directly propor-
tional to the energy of motion. For mass m at rest in a local frame in space momentum p 
(the real component) is zero, and the total energy of motion is the rest energy 

¤ ¤

0 0;m m restE c mc E E c mc= = =i  (1.4.2:6) 

For mass m with momentum p in a local frame in space, the total energy of motion is 

( ) ( )
2¤ ¤ 2

0 0;m mE c mc E c p mc= + = +p i  (1.4.2:7) 

For electromagnetic radiation, rest energy is zero, and the energy is  

¤

0mE c p=  (1.4.2:8) 

Substituting c0 by c, equations (1.4.2:6–8) convey the complex function presentation of 
the energy of motion to the scalar energy of contemporary physics.   

Kinetic energy 

The kinetic energy of mass m is expressed as 

( )0 Δ ΔkinE c m c c m=  +   (1.4.2:9) 

replacing the SR equation Ekin =Δm·c. The last term in (1.4.2:9) is the kinetic energy ob-
tained in a gravitational field, where the kinetic energy is obtained against the reduction of 
the local rest energy via the tilting of local space and the reduction of the local velocity of 
light, Δc. Kinetic energy obtained at constant gravitational potential requires the supply of 
mass Δm from the accelerating system. 

The laws of motion 

Newton’s laws of motion meant the start of mathematical physics. The first law states 
the concept of an inertial frame of reference; an object preserves its state of rest or mo-
tion if there is no force acting on it. The second law states that a change in motion is 
proportional to the force impressed, and the third law, the balance of opposite actions.  

The second law is expressed as 

Newton

d dm d
m m

dt dt dt
= = = =

p v v
F a  (1.4.2:10) 

where the first expression interprets Newton’s motion as momentum. The last expression 
assumes classical constant mass, which reduces the change in momentum to acceleration, 
the change in velocity.  

The theory of special relativity introduced the relativistic mass increase associated with 
velocity  

( )
3 221SR

d
m β

dt

−

= = − 
p

F a  (1.4.2:11) 

In the DU framework, the equation of motion is derived from the change in the total 
energy of motion 
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resulting in equation 
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(see Section 1.2.3, Energy structures in space). 
Equation (1.4.2:13) conveys a mass increase as the energy contribution needed to 

build up motion and the effects of motion and gravitation in the parent frames affecting 
the local rest mass and the velocity of light. Once we omit the effects of the parent 
frames and the local gravitational state, we enter to the SR equation (1.4.2:11) and, by fur-
ther omitting the effect of the relativistic mass of SR or the mass contribution of DU, the 
Newtonian equation (1.4.2:10).  

An essential difference between SR and DU comes from the kinematic versus dynam-
ic approaches. In the kinematic approach of the SR, the relativistic mass increase is a 
property of motion, in the dynamic approach of the DU, the increased mass expresses 
the energy contribution needed to obtain the motion. As a local approach based on the 
relativity principle, special relativity does not recognize the effects of the parent frames, 
like the orbital motion and gravitational state of the Earth in the solar frame and the ef-
fects of the motion and gravitation of the solar system in the Milky Way frame. In many 
local observations, the effects of the parent frames are canceled but become meaningful 
in frame-to-frame observations. 

The Planck equation 

Traditionally, Planck’s equation, the energy (of a cycle) of electromagnetic radiation or 
a photon, is written in the form 

 ( )E hf h dt= =  (1.4.2:14) 

where h is Planck’s constant, f  is the frequency and dt =1/f is the cycle time. Observing 
that the velocity of light is an internal factor in Planck’s constant h, Planck’s equation can 
be rewritten 

20 0
0

h h
E c c c

λ λ
=   (1.4.2:15) 

where h0=h/c and λ is the wavelength of radiation. The quantity h0/λ has the dimension of 
mass [kg]. 

Rewriting of Planck’s equation does not need any assumption tied to the Dynamic 
Universe. The interpretation of Planck’s equation as the energy injected into a cycle of 
electromagnetic radiation by a single electron transition in the emitter is confirmed by the 
standard solution of Maxwell’s equations for an electric dipole (see Section 5.1.1).  
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Physical and optical distance in space (cosmology) 

In DU space, the physical distance to an object (corresponding to the comoving distance 
in standard cosmology) is expressed in terms the separation angle θ seen from the 4-
center of space, or in terms of the redshift z 

( ) ( )4 4 41 ln 1θ

physD θ R R e R z−=  = − = +  (1.4.2:16) 

where R4=RH is the 4-radius of space.  

1.4.3 Dynamic Universe and contemporary physics 

In spite of the very different theory structures and postulates, predictions for most lo-
cal observables in the DU and contemporary physics are essentially the same. The cosmo-
logical appearance of space in the DU is quite different from that in standard Big Bang 
cosmology. In the DU, there is no instant start of physical existence or a “turn on” of the 
laws of nature. The laws of nature and the substance for the expression of energy are un-
derstood as eternal qualities. The buildup and release of the rest energy needed for the 
expression of physical existence and all material structures in space appear as a continu-
ous process from infinity in the past to infinity in the future – or a cyclic process repeat-
ing the contraction-expansion cycles. Space is characterized as a zero-energy continuum 
with the energies of motion and gravitation in balance. 

The system of nested energy frames is a characteristic feature of the Dynamic Uni-
verse. It allows the use of time and distance as absolute coordinate quantities and allows 
an analytical study of the linkage between the local and the whole, and thereby the linkage 
between local objects. 

We may assume that the actual system of energy frames is more complicated than the 
simple hierarchical structure presented in this book. As in the case of Newtonian gravita-
tional potential or the spacetime structure in general relativity, all mass objects or mass 
distribution in space contribute to a local condition. The hierarchical approach used in 
the system of nested energy frames, however, is illustrative and serves most practical 
needs. 

In the DU, the picture of “quantum reality” is a derivative of the properties of mass as 
a wavelike substance – and the linkage of mass waves and electromagnetic radiation. As 
illustrated by the solution of the principal electron states in a hydrogen atom in Section 
5.1.4, a quantum state can be understood as the energy minimum of a resonant mass 
wave state.  

A quantum of radiation in the DU is the energy injected into a cycle of electromagnet-
ic radiation by a single unit charge transition. A point emitter, such as an atom, can be 
approximated as a one-wavelength dipole in the fourth dimension. An isotropic emitter 
generates radiation spreding uniformly in all space directions. A directing emitter gener-
ates photon-like localized radiation like a laser as a macroscopic directing emitter.  

Table 1.4.3-I summarizes some basic properties of contemporary physics (special rela-
tivity, general relativity, FLRW cosmology, quantum mechanics) – and the Dynamic Uni-
verse. 
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Contemporary physics; SR,GR, 
FLRW-cosmology, QM 

The Dynamic Universe 

Birth of the universe 
Big Bang turning on time and the 
laws of nature and producing the 
energy for physical existence.  

Buildup of the rest energy of mat-
ter in a contraction phase before 
singularity in spherically closed 
space. 

Equality of the total 
gravitational energy 
and total rest energy in 
space 

Coincidence. 

Expression of the overall zero-
energy balance of motion and 
gravitation in space = The zero-
energy principle. 

The velocity of light 
Postulated to be the same (con-
stant) for any observer. 

Determined by the velocity of 
space in the fourth dimension. 

Rest energy of matter Property of mass. 
The energy of motion mass pos-
sesses due to the velocity of space 
in the fourth dimension. 

Geometry of space 

Undefined as a whole. Defined 
locally by spacetime metrics as an 
attribute of mass distribution in 
space. 

Space is described as the 3-surface 
of a 4-sphere. Mass centers in 
space result in local dents in the 
fourth dimension. 

Relativity 
Consequence of spacetime met-
rics. 

Consequence of the conservation 
of total energy in space. 

Effect of motion and 
local gravitation on 
clock readings 

The effect of motion and gravita-
tion on clocks is due to dilated 
time. 

The effect of motion and gravita-
tion on clocks is a consequence of 
the conservation of total energy in 
space. 

Planck’s equation 
Postulated as E=h f, where h is 
the Planck constant [Js]. 

Derived from Maxwell’s equa-
tions into form Eλ =h0/λ c0c, 
where h0 [kgm] is the intrinsic 
Planck constant, and the quantity 
h0/λ [kg] is the elementary mass 
equivalence of a cycle of radia-
tion.  

Quantum objects 
Structures described in terms of 
wave functions. 

Resonant mass wave structures. 

Approach to unified 
theory 

Field theory for unifying primary 
interactions. 

Unified expression of energies. 

Table 1.4.3-I. Comparison of some fundamental features in contemporary physics and the Dy-
namic Universe. 
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Linkage of local and global 

Any local object is linked to the rest of space via the global gravitational energy. Any 
local gravitational system expands with the expansion of space. Any velocity in space is 
related to the velocity of space. When an object is accelerated in space, inertia appears as 
the work done against the global gravitational energy by the imaginary component of the 
kinetic energy (Section 4.1.3). This is the quantitative explanation of Mach’s principle. 

The buildup of local structures 

The primary energy buildup in Dynamic Universe is described in terms of the dynam-
ics of hypothetical homogeneous space, with motion only in the fourth dimension. There 
is no answer to what broke the ideal symmetry of homogeneous space to enable the 
buildup of radiation and material structures in space.  

We may think that the turn of the contraction phase to expansion phase did not occur 
through an ideal single point, but by passing the 4-center at a finite radius, which meant 
conversion of, at least, part of energized mass into electromagnetic radiation in space — 
turning on the light in space — and triggering elementary particle buildup and the process 
of nucleosynthesis. 

The destiny of the universe 

The Dynamic Universe theory, as presented in this book, does not solve or define the 
ultimate beginning or end of the physical existence. Mathematically, the cycle of physical 
existence and the zero-energy balance extend from infinity in the past to infinity in the 
future. It is natural to think about the possibility of closing also the fourth dimension 
which would turn the expansion of space back to a new contraction and expansion cycle.  

 
 



 

 

2. Basic concepts, definitions and notations 

2.1 Closed spherical space and the universal coordinate system 

2.1.1 Space as a spherically closed entity 

For a holistic view of space as an energy system, a basic assumption needed is that 
three-dimensional space is closed. Closing of a three-dimensional space requires the 
fourth dimension. With the three-dimensional space closed symmetrically through a 
fourth dimension, we obtain a three-dimensional “surface” of a four-dimensional sphere. 
On a cosmological scale, the curvature of spherically closed space can be expressed in 
terms of the radius of the structure in the fourth dimension, the 4-radius of space. Visual-
ization of a four-dimensional sphere is difficult; we can approach the visualization by first 
thinking of an ordinary three-dimensional ball. In a three-dimensional ball, the surface is 
two-dimensional like a plane but curvature in a third dimension makes it closed. Closing 
of three-dimensional space spherically through a fourth dimension makes it the “surface” 
of a 4-sphere with the radius perpendicular to all three space directions. In principle, 
space as the three-dimensional “surface” of a 4-sphere has no extension or “thickness” in 
the fourth dimension (see Figure 2.1.1-1).  

A useful way of visualizing spherically closed space in the four-dimensional universe is 
to look a plane passing through the center of the 4-sphere. On such a plane, the origin of 
the universal coordinate system is set to center of the 4-sphere, and any space direction is 
seen as a circumference of a sphere with radius R4 around the origin, Figure 2.1.1-2 (a).  

 
Figure 2.1.1-1. If we wish to eliminate the edges of a piece of paper and make its two-dimensional 
surface continuous, we need to wrap the paper around in some way. By forming it into a tube we 
can eliminate two of the four edges, but then a third dimension is added as the radius of the tube. 
And the ends of the tube still have edges. The simplest structure that will also eliminate the edges 
of the tube is a sphere. Now the surface is symmetric and continuous in all directions. The third 
dimension we have added is perpendicular to the surface dimensions. The added dimension can be 
measured as distance, but it is not accessible without leaving the surface. 

(a) (c) (b) 
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Figure 2.1.1-2. (a) Universal coordinate plane crossing points A and B in space and the center of 
the 4-sphere inhabiting space. Any point in space is at distance R4 from the origin at point O. 
When, analogously, we eliminate the edges of a three-dimensional space by making it spherically 
continuous, we add a radius in the fourth dimension, perpendicular to the three space directions 
which now appear as tangential directions in the structure. The shortest distance between points A 
and B in space is sAB = arc[AB] along the circumference. (b) It is useful to apply complex coordi-
nates in the study local phenomena in space. In the local coordinates at points A and B the real 
axes has the direction of  arc[AB] connecting points A and B in space. Due to the curvature of 
space in the fourth dimension, the local real and imaginary axes at A and B have different direc-
tions. The path of light from A to B follows the curvature of space in the fourth dimension; for 
the viewer it looks like light is coming along a straight line. 

The distance between points A and B in Figure 2.1.1-2 can be expressed with the aid 
of angle distance θAB as 

  0
arc

AB AB
AB s θ R= =  (2.1.1:1) 

If A and B stay at rest in space angle θAB remains constant, as it does also when space 
is expanding through an increase in R4. 

The present value of the 4-radius is about R4  14 109 [l.y.] = 1.3 1026 [m]. The value 
of angle θ corresponding to the distance from the Earth to the Sun is about 

θr(Sun) = s/R4  1.51011/1.31026  10–15 radians. For the diameter of the Milky Way the 

corresponding value of θ is θr(MW) = s/R4  10–5 radians. 

2.1.2 Time and distance 

Time and distance are fundamental properties of the physical universe and they serve 
as basic quantities for human conception. Time and distance are used as universal coor-
dinate quantities applicable to all phenomena ― independent of the observer and the lo-
cal environment.  

The frequency of a time standard like a Ce-clock is a function of the state of motion 
and gravitation in the frame in which the clock is running. The effects of the local gravita-
tional state on the clock frequency and the local velocity of light are equal which means 

θAB 

R4 

A 

A 
B 

ImA 
ImB 

ReB 

ReA 

(a) (b) 

R4 

B 

θAB 

O O 

sAB sAB 
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that the velocity of light is observed unchanged at any gravitational state. A distance 
standard based on the wavelength of a defined characteristic radiation of an atom is sub-
ject to the state of motion but not to the state of gravitation in the frame where it is used. 

2.1.3 Absolute reference at rest, the initial condition 

 The center of spherically closed space is the zero-momentum point of the system. It 
serves as the reference at rest for the contraction and expansion of space in the fourth 
dimension. Although not within three-dimensional space, the center at rest satisfies the 
intuitive view of Isaac Newton “center of space at rest”, expressed in the Principia 62. 

In the initial condition of space, all mass is assumed to be at rest and homogeneously 
distributed in space with an essentially infinite 4-radius. Infinite distances in space mean 
zero gravitational energy and the state of rest means zero energy of motion.  

2.1.4 Notation of complex quantities 

Local phenomena in space are described in locally defined complex coordinates where 
space dimensions appear as the real part of a complex function and the fourth dimension 
as the imaginary part. So long as space is assumed to be a fully homogeneous spherical 
structure with constant 4-radius R4, the imaginary axis is aligned with the local 4-radius R4 
everywhere in space.  

We will generally use superscript (¤) to denote a complex function. A single apostro-
phe ( ' ) will denote the real part of the complex function in the selected space direction, 
and double apostrophes ( " ) the imaginary part. For example, the complex momentum of 
an object with momentum p’ in space and momentum p” in the fourth dimension is ex-
pressed (Fig. 2.1.4-2) as 

¤ ' i " "p p p p= + = +p i  (2.1.4:1) 

For compatibility with the established use of symbols, however, the real part of mo-
mentum will usually be denoted as vector p or its scalar value p, instead of p’, as shown in 
equation (2.1.4:2). In the two-dimensional complex plane presentation, the real axis is 
chosen in the direction of the phenomenon studied, which makes it possible to replace a 

vector quantity (in space) with its scalar value like p  p. In the same way, velocity in 
space will be denoted as v instead of v or v’ and the velocity of light propagating in space 
as c instead of c' or c’. 

The local velocity of light in space is equal to the velocity of space in the local fourth 
dimension. The rest momentum of mass occurs in the local fourth dimension, the imagi-
nary direction 

rest
mc=p i  (2.1.4:2) 

The rest energy of mass is expressed 

( ) 0 04 0
irest rest restE c c c mc= = =p p  (2.1.4:3) 
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where c4(0) means the imaginary velocity of homogeneous space, which is just the expan-
sion velocity of the “surface” of a perfect 4-sphere. In locally tilted space (see Section 
4.1.1) the velocity of space c4(ψ) in the local fourth dimension, and the related local velocity 
of light c are smaller than the velocity of light in non-tilted space c4(0δ) 

( ) ( )4 04
cos

δψ
c c c ψ= =  (2.1.4:4) 

where ψ is the tilting angle of local space, Figure 2.1.4-1. 
The notation c0 is used for the velocity of light in hypothetical homogeneous space, 

c0 = c4(0). Because we are used to using the velocity of light as the reference for velocities 
in space, c0 is used generally as the notation for a velocity equal to the expansion velocity 
of space in the direction of the 4-radius R4. 

The rest energy in (2.1.4:3) is directly proportional to the rest momentum. The com-
plex presentation of momentum and the energy of motion also reveal the linear linkage 
between momentum and the energy of motion when there is a real component of mo-
mentum, i.e. a momentum in a space direction. Generally, the complex presentation of 
the energy of motion is [see equation (2.2.2:4)] 

( )¤ ¤

0 0 0' i " ' i "m m mE E E c c p c p p= + = = = +p  (2.1.4:5) 

The total energy of motion in equation (2.1.4:5) is the DU replacement of the concept 
of total energy in the special relativity framework. Figures 2.1.4-2 and 2.1.4-3 illustrate the 
use of complex presentation of the momentum and the energy of motion. 

The absolute value of the total energy becomes 

( ) ( )
2¤ 2 2 2 2 2

0 0' " ' "m m mm tot
E E E E c p p c p mc= = + = + = +  (2.1.4:6) 

and the energy-momentum four-vector  

( )
22 2 2 2

0 0mE c mc c p= +  (2.1.4:7) 

The increase of the total energy of motion due to motion in space is the kinetic energy  
 

Im0 

(a) 

( )4 0
c

Imψ 
Im0 

Im0 

(b) 

Im0 Im0 Im0 

( )4 0
c

( )4 0
c

( )4 0
c ( )4 0

c
( )4 0

c
( )4 ψ

cψ

Figure 2.1.4-1. (a) The local imaginary axis in homogeneous space Im0 follows the spherical shape. 
It always has the direction of the local 4-radius of space. (b) In locally tilted space in the vicinity of 

mass centers, the direction of the local imaginary axis Im is tilted by an angle ψ relative to the 
imaginary axis Im0. Local tilting of space means that the velocity of space in the local fourth di-
mension is reduced as c4(ψ ) = c0(0δ) cosψ. In real space, mass center buildup and the associated tilt-
ing of space occurs in several steps leading to a system of nested energy frames (Section 4.1.4).  

 



Basic concepts, definitions and notations 83 
 

 

 
Figure 2.1.4-2. Complex presentation of momentum. (a) Momentum of a mass object at rest in 
space appears in the imaginary direction only p¤ = prest(0) = i p”. (b) The total momentum p¤

φ of an 
object moving in space is the sum of rest momentum ip”φ and the momentum p’φ in a space direc-
tion. (c) The increase of the absolute value of momentum due to momentum in space is p¤

φ = 
prest(0) +Δp¤, where Δp¤ is the change in the absolute value of total momentum due to momentum 
in space (in the direction of the total momentum in the figure). 

 
Figure 2.1.4-3. Complex presentation of the energy of motion. (a) The rest energy of a mass object 
at rest in space appears as imaginary energy of motion E¤

m(0) = i E”m(0). (b) The total energy of 
motion E¤

m(φ) of an object moving in space is the sum of rest energy iE”m(φ ) and the real part of 
the energy of motion (the energy equivalence of momentum in space) E’m(φ ). (c) The increase of 
the absolute value of the energy of motion due to momentum in space is the kinetic energy 
Ekin = ΔE¤

m(φ) (in the direction of the total energy of motion in the figure). 

 

( ) ( ) ( )
¤ ¤ ¤ ¤

00
Δ ΔM kin restm m totm φ

E E E E c E E= = − = = −p  (2.1.4:8) 

A detailed derivation of kinetic energy is presented in Section 4.1.2. 
 
 

Im 

(a) 

=¤

0 i "mE E

Re 

( )
¤Δ
m φ

E

φ 

(c) 

Im 

( )
¤

m φ
E

Re 
φ 

(b) 

( )'
m φ

E

Im 

( ) ( )0
" "

mm φ
E E=

( )0
"

m
E

Re 

( ) ( )0
" "

mm φ
E E=

( )'
m φ

E

Im 

(a) 

( )0
i "

rest
p p=

Re 

 ¤p

φ 

(c) 

'φp

Im 

¤

φp

Re 
φ 

(b) 

'φp

Im 

( )0
"φ rest

p p=

( )0rest
p

Re 

( )0
"φ rest

p p=



84 The Dynamic Universe 

 

2.2 Base quantities  

2.2.1 Mass 

In the DU framework mass has the meaning of the substance for the expression of 
energy.  

The mass equivalence of a cycle of electromagnetic radiation, as derived from Max-
well’s equations, is  

2 20
0λ

h
m N N ћ k

λ
= =  (2.2.1:1) 

where N 2 is an intensity factor, and h0 is the intrinsic Planck constant,  

 0

0

kg m
h

h
c

   (2.2.1:2) 

The intrinsic Planck constant is derived from Maxwell’s equations in Section 5.1.2. 
The derivation can be carried out from a general basis without assumptions tied to the 
Dynamic Universe model.  

The other way round, the wavelength equivalence λm and the wave number equiva-
lence km of mass m are 

0

0

2
andm m

h π m
λ k

m λ ћ
= = =  (2.2.1:3)  

where ħ  h/2π. 
The intensity factor N 2 in (2.2.1:1) comes from the solution of Maxwell’s equation as 

the number of electrons oscillating in a one-wavelength dipole emitting electromagnetic 
radiation (Section 5.1.2). In the DU framework, with space moving at velocity c in the 
fourth dimension, a point emitter in space can be understood as a one-wavelength dipole 
in the fourth dimension with any space direction on a normal plane of the dipole. For 
N = 1 in equation (2.2.1:1), i.e. a single electron transition in a one-wavelength dipole, we 
get the minimum mass equivalence of a cycle of radiation  

( )
0

00λ

h
m ћ k

λ
= =  (2.2.1:4) 

and the energy emitted into one cycle of electromagnetic radiation by a single electron 
transition in a point source 

( ) ( )
0

0 0 0 0 0 0 00 0λ λ

h
E c c m c ћ kc c c h c f h f

λ
= =  = = =  = p c  (2.2.1:5) 

which is known as the Planck equation. 
The mass presentation of wave and the wave presentation of mass allow unified ex-

pressions of the energy of a cycle in the forms 
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0
0 0 0 0 0

h
E c c mc c ћ kc c c

λ
= = = =p  (2.2.1:6) 

which applies equally for a cycle of mass wave and for the mass injected in a cycle of elec-
tromagnetic radiation at emission when the wavelength is the emission wavelength λ=λe. 

Electromagnetic radiation propagating in expanding space is subject to redshift, an increase of the 
wavelength; the mass equivalence of a cycle of radiation, mλ=h0/λe, bound to the emission wavelength is 
conserved in the lengthened cycle, but the energy density of a cycle of radiation is diluted. 

As a major difference to the prevailing concept of quantum as a quantum of action, the 
concept of quantum in the DU framework serves as the measure of the mass content of a 
cycle of electromagnetic radiation or a mass wave.  

Mass is associated with gravitational potential extending, as a scalar gravitational field, 
throughout spherically closed space. The gravitational potential dilutes in inverse propor-
tion to the distance from its source mass. The gravitational potential follows the motions 
of its source mass without delay. Mass senses the gravitational potential of all other mass 
as gravitational energy. 

2.2.2 Energy and the conservation laws 

Gravitational energy in homogeneous space 

In homogeneous 3D space, gravitational energy is expressed in the form of the New-
tonian gravitational energy 

( )

( )
0g

V

ρdV r
E mG

r
 −   (2.2.2:1) 

where G is the gravitational constant, ρ is the mass density, and r is the distance from m to 
dV. The total mass in homogeneous space is 

Σ

V

M ρ dV ρV= − =  (2.2.2:2) 

In spherically closed homogeneous 3D space, the total mass is MΣ =2π 2ρR4
3 where R4 

is the radius of space in the fourth dimension. The total gravitational energy in spherically 
closed space becomes 

( )
Σ

4

"
g tot

GM M
E

R
= −  (2.2.2:3) 

where M” is the mass equivalence of the total mass at the barycenter of the structure 
(Section 3.2.2).  

The energy of motion in homogeneous space 

In homogeneous space, there is no motion in space directions. The only motion ap-
plicable to homogeneous space is the contraction or expansion of the 4D sphere. Denot-
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ing the velocity of homogeneous space in the fourth dimension by c0, the energy of mo-
tion of mass m in space is expressed as the product of velocity c0 and the momentum 
p=mc0 

( )
2

0 0 0 00m
E c c m mc =  =p c  (2.2.2:4) 

substituting the total mass, MΣ =Σm, into (2.2.2:4), the total energy of motion is 

 ( )
2

0 0 Σ 0 Σ 00 , totm tot
E c c M M c =  =p c  (2.2.2:5) 

In non-homogeneous space with local mass centers, the direction of the local 4-
velocity, c, may deviate from the 4-velocity, c0, of homogeneous space. The general ex-
pression for the total energy of motion is expressed as a complex function with the mo-
mentum due to the motion of space as the imaginary part imc and the momentum in 
space p as the real part 

( )
2¤ ¤ 2

0 0 0mE c c mc c p mc = + = +p p i  (2.2.2:6) 

The last form of equation (2.2.2:6) is formally equal to the expression of the total en-
ergy in special relativity. The last form of the energy of motion in (2.2.2:4) has the form 
of the first formulation of kinetic energy, vis viva, “the living force” suggested by Gottfried 
Leibniz in the late 1600’s 8.  

In the solar system, the local 4-velocity of space and the local velocity of light, c, can 
be estimated to be of the order of ppm (10 –6 ) smaller that the velocity of light, c0, in hy-
pothetical homogeneous space. 

Conservation of total energy 

The zero-energy balance of the energies of motion and gravitation created by the pro-
cess of contraction and expansion of space are conserved in all energy interactions in 
space. 

2.2.3 Force, inertia, and gravitational potential 

Force is defined as the gradient of potential energy and, as inertial force, a change in 
momentum. Force is local by its nature. Gravitational force means sensing of the gradient 
of the local gravitational potential by local mass. Gravitational potential is an intrinsic 
property of its source mass. The gravitational potential is an intrinsic property a mass ob-
ject extends throughout the spherically closed space; a motion of the source mass is con-
veyed to the gravitational potential without delay.  

Inertia is the work done by an accelerated mass object against the global gravitational 
energy. Inertia in a local frame is equal to the imaginary component of the complex kinet-
ic energy of an object (see Sections 4.1.3 and 4.1.7). 



 

 

3. Energy buildup in spherical space 

3.1 Volume of spherical space 

The volume of spherically closed three-dimensional space is calculated as the surface 
“area” of a four-dimensional sphere. To do this, we start by calculating the surface area of 
an ordinary three-dimensional sphere. 

With reference to Figure 3.1-1, observing that r = R3 sinθ we can calculate the surface 
area S3 of a sphere in three dimensions as the integral 

2 2

3 3 3 3

0 0

2 2 sin 4
π π

S πr R dθ πR θ dθ πR= = =   (3.1:1) 

where the circular differential surface unit is the circumference, 2π r, times the differential 
width R3 dθ. By following a similar procedure but replacing the circumference (2π r ) of a 
circle with radius r = R4 sinθ by the area of a sphere with radius r (S3=4π r 2 ), as given by 
equation (3.1:1), we get 

2 3 2 2 3

4 4 4 4

0 0

4 4 sin 2
π π

S πr R dθ πR θ dθ π R V= = = =   (3.1:2) 

The “surface” S4 = 2π 2R4
3 is equivalent to the volume of the closed three-dimensional 

surface of a four-dimensional sphere defined by the 4-radius R4. 
All objects in three-dimensional space are located at the surface of the four-

dimensional sphere. At least on a macroscopic scale, the “thickness” of the surface in the 
direction of the 4-radius is zero. As a consequence, the fourth direction is not accessible 
to us. Any motion and energy interaction in three-dimensional space are described as 
phenomena on the surface of the sphere. 

  

Rn 

r 

Rndθ 

θ 
Figure 3.1-1. Calculation of the surface 
area of three- and four-dimensional 
spheres. 
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3.2 Gravitation in spherical space 

3.2.1 Mass in spherical space 

Gravitational interactions are assumed to take place in three-dimensional space. The 
gravitational field does not penetrate inside or extend outside space but follows the shape 
of space. 

Referring to Figure 3.2.1-1, we can calculate the gravitational energy of the whole dis-
tributed mass at the surface of the sphere on a unit mass m at a selected location x0, y0, z0. 

On the cosmological scale, the total mass M is considered to be uniformly distributed 
in space, i.e. uniformly distributed on the three-dimensional surface of the sphere defined 
by the 4-radius R4. Making reference to equation (3.1:2), the derivation of the surface area 
S4 of the sphere, we can express the mass dM in volume dV = 4π r 2R4 dθ with the aid of 
mass density ρ as 

2

44dM ρdV πρr R dθ= =  (3.2.1:1) 

and by replacing r by R4
 sinθ as 

3 2

44 sindM πρR θ dθ=  (3.2.1:2) 

and by further applying expression (3.1:2) for the total volume of the three- dimensional 
surface, as 

22
sindM ρV θ dθ

π
= s (3.2.1:3) 

The factor ρV in equation (3.2.1:3) is equal to the total mass MΣ. Accordingly, equa-
tion (3.2.1:3) can be expressed as 

2Σ2
sin

M
dM θ dθ

π
=  (3.2.1:4) 

 

 

Figure 3.2.1-1. Calculation of the gravi-
tational energy of an object with mass 
m, due to the effect of the total mass 
MΣ in space. The total mass is consid-
ered to be uniformly distributed on the 
three-dimensional surface of a four-
dimensional sphere with radius R4. 

D = θ R

4 

R4 

x0,y0,z0 
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3.2.2 Gravitational energy in spherical space 

Based on the spherical symmetry, the gravitational energy of mass dM at distance 
D = θR4 (see Figure 3.2.1-1) from mass m is expressed as inherent gravitational energy 
defined in equation (2.2.2:1) 

4

g

Gm
dE dM

θR
= −  (3.2.2:1) 

where distance θR4 is the distance of dM from mass m along the spherical space. By apply-
ing equation (3.2.1:4) for mass dM, equation (3.2.2:1) can be expressed as 

2

Σ

4

2 sin
g

GmM θ
dE dθ

π R θ
= −  (3.2.2:2) 

The gravitational energy due to the total mass in space is determined by integrating 
equation (3.2.2:2) for θ = 0 to π, corresponding to Newtonian gravitation 

( )

2

Σ Σ

4 40

2 sin
π

g g π

GmM GmMθ
E dθ I

π R θ R
= − = −  (3.2.2:3) 

The integral in equation (3.2.2:3) cannot be solved in closed mathematical form. Nu-
merical integration of (3.2.2:3) gives 

( )

2

0

2 sin
0.776

π

g π

θ
I dθ

π θ
=   (3.2.2:4) 

Due to the spherical symmetry, equations (3.2.2:3) and (3.2.2:4) apply for mass m any-
where in homogeneous space. A direct interpretation of the equations is that the gravita-
tional energy of mass m due to all other mass in space can be expressed as the gravita-
tional energy due to mass M” = Ig MΣ at the center of the 4D sphere, inside the “hollow” 
space 

4

"
g

GmM
E

R
= −  (3.2.2:5) 

The mass M” = IgMΣ is referred to as the mass equivalence of space, Figure 3.2.2-4.  

 

M”  
m 
x0,y0,z0 

R 

Figure 3.2.2-4. The gravitational energy due 
to the total mass MΣ on mass m at any loca-
tion x0, y0, z0 in space, can be described as 
the gravitational energy due to the mass 
equivalence M” at the center of the 4D 
sphere defining space. 
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Figure 3.2.2-2. The tangential shrinking force, F'(g),t , due to the gravitation of uniformly distributed 
mass in spherical space is equivalent to the gravitational effect, F"(g), of mass equivalence M” at 
distance R4 at the center of the structure. 

The total mass MΣ in space can be expressed as the integral of all masses dm’ as 

Σ

0

'
M

M dm=   (3.2.2:6) 

Substitution of MΣ = M”/ 0.776 for m in equation (3.2.2:6) gives the total gravitational 
energy in space 

2

ΣΣ
( )

4 4

" g

g tot

GI MGM M
E

R R
= − = −  (3.2.2:7) 

Gravitational force is defined as the gradient of gravitational energy. The gravitational 
force on mass m towards mass equivalence M” is obtained as the derivative of the gravita-
tional energy in equation (3.2.2:5)  

4 42

4 4

"
ˆ ˆ

g

g

dE GmM

dR R
= = −F r r  (3.2.2:8) 

where the direction of the unit vector 4
r̂

 
is in the direction of radius R4. 
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3.3 Primary energy buildup of space 

3.3.1 Contraction and expansion of space 

The initial condition for the development of the energies of motion and gravitation in 
space is considered as a state of rest with infinite distances in space. In such condition 
both the gravitational energy and the energy of motion are zero. This situation occurs 
when the 4-sphere has an infinite radius R4 at infinity in the past.  

The primary energy buildup is described as free fall of spherical space from the state 
when the 4-radius is infinite to the state when it is zero. In spherical geometry, the pro-
cess means a homogeneous contraction of space, culminating in a singularity where space 
is reduced to a single point or a minimum radius. At singularity, the mass in space has 
essentially infinite momentum, which turns the process into expansion. In the expansion 
phase the 4-radius increases back to infinity, while the energy of motion gained in the 
contraction is returned to gravitational energy. Free fall in the contraction phase and free 
escape in the expansion phase maintain zero total energy in the system. 

In the contraction phase, mass in space gains energy of motion from its own gravita-
tion. Space loses volume and gains motion. In the following expansion phase, space gains 
volume by losing motion. Space with infinite 4-radius continues to host all mass, but the 
mass is without energy: the energy of gravitation is zero because of the infinite distances 
and the energy of motion is zero because all motion has ceased, Figure 3.3.1-1. 

Because the sum of the energies of gravitation and motion remains zero throughout 
the process of energy buildup and release, the energy of motion in the imaginary direction 
is 

i " i "m gE E= −  (3.3.1:1) 

or 

" " 0m gE E+ =  (3.3.1:2) 

In the primary energy buildup, mass within space is assumed to stay at rest. The only 
velocity of mass in the primary energy buildup is the contraction and expansion of spher-
ical space in the imaginary direction. Accordingly, we can apply the inherent energy of 
motion to describe the energy of motion mass has in the imaginary direction (the direc-
tion of R4). With reference to equation (2.2.2:4), the energy of motion of mass m at rest in 
space has due to the motion of space at velocity c0 is 

2

0 0 0"mE c mc mc= =  (3.3.1:3) 

Substitution of equation (3.3.1:3) for E"m and equation (3.2.2:5) for E"g in equation 
(3.3.1:2) gives 

2

0

4

"
0

GmM
mc

R
− =  (3.3.1:4) 

Observing, that the total mass in space is the sum of all masses m  
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Figure 3.3.1-1. Energy buildup and release in spherical space. In the contraction phase, the velocity 
of the imaginary motion increases due to the energy gained from loss of gravitation. In the expan-
sion phase, the velocity of the imaginary motion gradually decreases, while the energy of motion 
gained in contraction is returned to gravity. 

Σ

V

M m=   (3.3.1:5) 

the total energies of motion and gravitation can be expressed as 

2 Σ
Σ 0

4

"
0

GM M
M c

R
− =  (3.3.1:6) 

where M” is the mass equivalence of space defined in equation (3.2.2:6).  
Velocity c0 can be solved from equation (3.3.1:6) in terms of G, MΣ, and R4 

0

4

"GM
c

R
=   (3.3.1:7) 

The negative value of c0 in equation (3.3.1:7) refers to the velocity of contraction and 
the positive value to the velocity of expansion. The processes of contraction and expan-
sion are symmetrical. All energy of motion gained in the contraction is returned to gravi-
tational energy in the expansion.  

Energy E"m in equation (3.3.1:3) is the energy mass at rest in homogeneous space has 
due to the velocity of contraction or expansion of space in the imaginary direction, i.e. it 
can be characterized as the rest energy of mass at rest in hypothetical homogeneous 

= 2

4mE mc
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"
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GM
E m

R
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Energy of motion 

Energy of gravitation 

time 

Expansion Contraction 
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space. As will be shown in Section 4.1.2 the maximum velocity, c, obtainable in space is 
equal to the velocity of space in the local fourth dimension, which may deviate from the 
direction of the 4-radius (see Section 4.1.1). The general form of the rest energy, in ac-
cordance with (2.2.2:8) is  

0 0"rest mE E c c mc= = =p  (3.3.1:8) 

The rest energy of mass in space is the energy of motion due to the contraction and 
expansion of space. 

 

3.3.2 Mass and energy in space 

The 2006 CODATA recommended values of the gravitational constant and the pre-
sent velocity of light at the surface of the Earth are: 

G = 6.67428 10–11    [Nm2/kg2] (3.3.2:1) 

with a relative uncertainty, |ΔG|/G = 1.5 10–3, and 

c = 2.99792458 108    [m/s]   (exact value defined) (3.3.2:2) 

As is shown in Section 4.1.1, the velocity of light is dependent on local gravitational 
conditions. As a consequence, the velocity of light on the Earth is slightly (presumably of 
the order of ppm) smaller than the velocity of light in hypothetical homogeneous space. 
The local velocity of light is denoted as c, in accordance with conventional notation. 

Equation (3.3.1:7) shows the relationship between the velocity of light and the 
4-radius of space. In the standard cosmology model, the constant velocity of light is relat-
ed to the curvature of space through the Hubble constant and Hubble radius. In spherical 
space, the meaning of the Hubble radius is essentially the 4-radius, R4.  

A recent estimate of the Hubble constant derived from the Wilkinson Microwave An-
isotropy Probe (WMAP) data combined with the distance measurements from the Type 
Ia supernovae (SN) and the Baryon Acoustic Oscillations (BAO) in the distribution of 

galaxies is H0 = 70.5 ±1.3 [(km/s)/Mpc] 74. 
Applying the Hubble constant H0 =70 [(km/s)/Mpc] and the local velocity of light, 

c  c0, given in equation (3.3.2:2), the present length of the 4-radius R4 is 

R4 = RH = c/H0 = 14.0109 light years (=1.32 1026 m) (3.3.2:3) 

By substituting in equation (3.3.1:6) the values of G, c, and R4 given in equations 
(3.3.2:1), (3.3.2:2), and (3.3.2:3), we obtain the total mass in space as  

 
2

534
Σ 2.3 10 kg

g

c R
M

GI
=     (3.3.2:4) 

and by applying equation (3.1:2) for the volume of space, we can express the density of 
mass in space as 
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Σ Σ

2 3

42
DU

M M
ρ

V π R
=   (3.3.2:5) 

Alternatively, by substituting equations (3.3.2:3) and (3.3.2:4) into equation (3.3.2:5) 
we can express the mass density in terms of the Hubble constant as 

2
27

2 2 3

4

kg
5.0 10

2 m
DU

g

c
ρ

π GI R

−  
=     

 (3.3.2:6) 

Applying the 4-radius R4 given in equation (3.3.2:3) as the Hubble radius, RH, of space 
in the expression of the Friedman critical mass density (consistent with Hubble constant 
H0 =71 [(km/s)/Mpc]), we get 

2
27

2 3

kg3
9.5 10

8 m
c

H

c
ρ

πGR

−  
=     

 (3.3.2:7) 

The calculations of mass densities ρc and ρDU and are illustrated in Figure 3.3.2-1(a) 
and 3.3.2-1(b), respectively. 

 

  

 

Figure 3.3.2-1 (b). In the DU, the density 
of matter is calculated from the total mass 
determined by the balance between the 
motion and the gravitation in the fourth 
dimension 

MΣ =M”/Ig = R4 c 2/Ig G 

resulting in mass density  

2
274

2 2 3

4

kg
5.0 10

2 mg

c
ρ

π GI R

−  
=      

 

R4 E"g
 

MΣ = 2ρπ 2R4
3
 

E”m
 

Figure 3.3.2-1 (a). The Friedman critical mass 
density, ρc , can be calculated by determining 
the escape velocity v = c of mass m from the 
surface of a three-dimensional sphere with 
radius r and the total mass  

M = ρc 4/3π r 3 

The Friedmann’s the critical mass density is 
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The DU prediction of the mass density corresponds to the “flat space” situation in 

Friedman-Lemaître-Robertson-Walker (FLRW) cosmology. Flat space in FLRW cosmol-
ogy means that sum of baryonic matter, dark matter and dark energy is equal to the 
Friedman critical mass density. There is no place or need for dark energy in the DU 
framework. The predictions for magnitude versus redshift of Ia supernova standard can-
dles in the DU are in a nice agreement with observations without dark energy (see Section 
6.3).  

Dark matter in the DU framework has the meaning of unstructured matter, which is 
considered as the initial form of matter. 

With reference to equation (3.3.1:5), the sum of the energies of gravitation and motion 
is zero all along the expansion of the 4-radius R4 as presented in Figure 3.3.2-2 based on 
equations 

 
2

70Σ

4

" 2.1 10 Jg

GM
E

R
= − = −   (3.3.2:8) 

and 

 2 70

Σ 0" 2.1 10 JmE M c= =   (3.3.2:9) 

where the gravitational constant G = 6.6710–11 [Nm2/kg2], the total mass in space 

MΣ= 1.81053 [kg], and the velocity of space along the 4-radius c0 = c = 3108 [m/s] at the 

present value of the 4-radius R4 = 13.8109 [l.y.]. 

3.3.3 Development of space with time 

The velocity of the expansion of space in the direction of the 4-radius can be ex-
pressed as 

4
0

dR
c

dt
=   (3.3.3:1) 
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Figure 3.3.2-2. The energies of 
motion and gravitation of matter 
in space as functions of the 
4-radius of space. 
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The time required for the 4-radius, R4, to increase from the singularity (R4 = 0, t = 0) 
to the present value of R4 can be obtained by integration of dt solved from equation 
(3.3.3:1) as 

4

0

1
dt dR

c
=  (3.3.3:2) 

4

4

00

1
R

t dR
c

=   (3.3.3:3) 

By applying equation (3.3.1:7) in equation (3.3.3:3) we get 

4

4 4

0
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"

R

t R dR
GM

=   (3.3.3:4) 

and 

3

42

3 "

R
t

GM
=  (3.3.3:5) 

and by further applying equation (3.3.1:7)  

4

0

2

3

R
t

c
=  (3.3.3:6) 

As a result of the higher expansion velocity close to the singularity, the age of the ex-
panding space is two-thirds of the age estimate based on a constant value of c0 as in the 
assumed inflation era in FLRW cosmology 63. 

By applying the estimated value of the present 4-radius, R4 = 13.8 109 light years, we 

obtain the time since the singularity as t = 9.2109 current years. Solving equation (3.3.3:5) 
for R4 gives 

( ) ( )
2/3 1/3 2/3

4 3 2 "R GM t=  (3.3.3:7) 

 

 

 

Figure 3.3.3-1. The decreasing expansion 
velocity of space in the R4 direction. The 
present deceleration of the expansion veloci-
ty, and with it the velocity of light, is about 
3.6 % per billion years. The velocity of light 
will drop to half of its present value in about 
65 billion years and to 1 m/s in about 

2 1026 billion years. 
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Figure 3.3.3-2. Development of the energy of the Universe as a zero energy process. 

The expansion velocity along the 4-radius can now be expressed as a function of the 
time from the singularity by differentiating equation (3.3.3:7) as 

1/3

1 34 4
0

2 2
"

3 3

dR R
c GM t

dt t

− 
= = = 

 
 (3.3.3:8) 

The development of the R4 expansion velocity according to equation (3.3.3:8) is pre-
sented in Figure 3.3.3-1. 

The change of the expansion velocity of space in the R4 direction can be obtained 
from equation (3.3.3:8) as 

1/3
1 3

0 021 1
"

3 3 3

dc ct
GM

dt t t

− 
= − = − 

 
 (3.3.3:9) 

or in terms of the relative change of the expansion velocity as 

0 0

00

1 1
; Δ

3 3

dc dt dc
t

cc t t
= − = −  (3.3.3:10) 

From equation (3.3.3:7) we obtain the relative change in the R4 radius of space: 
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dR dt dR
t

RR t t
= =  (3.3.3:11) 

According to equations (3.3.3:11) and (3.3.3:10), the present (t = 9.3 109 years) annual 

increase of the R4 radius of space is dR4/R4  7.2 10–11/year and the deceleration rate of 

the expansion dc4/c4  –3.6 10–11 /year, which also means that the velocity of light slows 

down as dc/c   –3.6 10–11 /year. In principle, the change is large enough to be detected. 
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However, the ticking frequency of an atomic clock used in such detection slows down at 
the same rate as the velocity of light thus disabling the detection (see Section 5.1.4). 

The energies of gravitation and motion can be expressed as functions of time by ap-
plying equations (3.3.3:7) and (3.3.3:8) in equations (3.3.2:8) and (3.3.2:9), respectively:  
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 (3.3.3:12) 
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  

 
 (3.3.3:13) 

Equations (3.3.3:12) and (3.3.3:13) can be applied for time symmetrically, from minus 
infinity to plus infinity. The development of the energies of motion and gravitation of the 
Universe as functions of time according to these equations is shown in Figure 3.3.3-2. 

3.3.4 The state of rest and the recession of distant objects 

As a consequence of the expansion of spherical space, objects at rest in space are sub-
ject to the hidden motion, the motion of space in the direction of the 4-radius. The in-
crease of the 4-radius also means a stretching of space; so that objects in space have sig-
nificant recession velocities with respect to one another. 

As suggested by the pioneering work of Edwin Hubble in the 1920s, distant galaxies 
have a high recession velocity due to the expansion of space. Nevertheless, each of them 
may be at rest in space in its own space location in the universal coordinate system, Fig-
ure 3.3.4-1. 

An observer in space observes the expansion of spherical space as the recession of all 
other objects at a velocity proportional to the expansion of the 4-radius and the distance 
of the objects from the observer along spherical space. 

Objects A1, A2, and A3 in Figure 3.3.4-1 are at rest in space. In other words, angles θ1, 
θ2, and θ3 stay unchanged. The physical distances BAn  (n = 1,2,3) can be expressed as in 
terms of angle θn and radius R4 as 

 

Figure 3.3.4-1. The expansion of the 4-
radius R4 causes an increase of all distances 
in space. The recession velocities v1, v2, and 
v3 relative to point B are proportional to the 
distances BA1, BA2, and BA3, along the 
curved space, respectively. 
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4
arc[ ]

n n n
BA D θ R= =  (3.3.4:1) 

Distances arc[BAn] increase with the increase of R4. The physical recession velocity 
can be expressed as 

4 4
0

( )n
n n n

d θ R dR
v θ θ c

dt dt
= = =  (3.3.4:2) 

When θn > 1 radian (θn > 57.3), the physical recession velocity of the object exceeds 
the velocity of light. 

Equation (3.3.4:2) shows the physical recession velocity at the time of the observation. 
Observations of distant objects are based on light propagation from the object. Since the 
4-radius of space increases at the same velocity as light propagates in the tangential 
(space) direction, the actual path of light is a spiral in four dimensions, Figure 3.3.4-2.  

The observed optical distance is the tangential length of the light path, i.e. the distance 
light travels in space. All the time during the propagation, the velocity of light in space, 
the tangential velocity component, cRe, is equal to velocity cIm in the imaginary direction, 
which in homogeneous space is equal to the expansion velocity of space, c4, along the R4 
radius. This means that the optical distance in space is equal to the increase of the 4-
radius of space during the signal transmission time. Electromagnetic radiation carries 
momentum only in the direction of propagation. As shown in Section 4.1.8, light propa-
gating in space has zero momentum in the imaginary direction. 

The difference between the physical and optical distances is small as long as the dis-
tance is small compared to the length of the 4-radius but becomes meaningful for objects 
at high distances. As a consequence, the linear Hubble law applies for objects at small 
distance but must be modified in the case of cosmologically distant objects (see Section 
6.1.2). 

The optical distance of stellar objects does not exceed the current length of the 4 radius of space, but ap-
proaches it for observations of events close in time to the singularity of space. 
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Figure 3.3.4-2. The physical distance from object 
A to observer B at the time T1 when the 4-radius 
R4 = R4(1) is equal to the arc A1B1phys = sA1B1 = 
θABR4(1). The optical distance is equal to the tan-
gential component of the spiral light path from 
A0 to B1. The tangential component is the dis-
tance in space, in the direction of the real axis in 
the complex coordinate system. Because, 
throughout the traveling path, the velocity of 
light in space is equal to the velocity of space in 
the imaginary direction the optical distance light 
travels in space is equal to the increase of R4 ra-
dius from R4(0). 
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3.3.5 From mass to matter 

The process of the contraction and expansion of space in the four-dimensional Uni-
verse is referred to as the process of primary energy buildup and release. The process of 
primary energy buildup energizes mass by putting it into motion and into closer gravita-
tional interaction with other mass in the contraction of space. The release of energy oc-
curs in the expansion phase, restoring the pre-contraction state. 

Matter is energized mass. In its initial form matter is considered as un-structured dark 
matter.  

Equation (3.3.1:4) shows the twofold nature of the energy of matter 

( ) ( ) ( )
2

00 0 0

0

"
" " " 0

"
tot m g

GmM
E E E mc

R
= + = − =  (3.3.5:1) 

where the distance to the mass equivalence of hypothetical homogeneous space is denot-
ed as R”0 = R4. 

Arithmetically, the total energy of matter is zero — the sum of the positive energy of 
motion and the negative energy of gravitation. The absolute values of the imaginary ener-
gies of motion and gravitation are thus a measure of the energy excitation of matter. 

Matter with localized expression takes the form of elementary particles and material. 
The primary energy buildup is described as a process for hypothetical homogeneous 
space. Accordingly, the primary energy buildup may not create localized structures need-
ed for the expression of baryonic matter or material forms. 

Equation (3.3.5:1) describes the twofold nature of matter manifesting itself through 
the energy of motion and the energy of gravitation. The balance of the energies of mo-
tion and gravitation can be understood as the excited state of two complementary forms 
of energy. As shown by equations (3.3.3:12) and (3.3.3:13) the excitation amplitude of the 
energies of motion and gravitation decreases as the Universe expands, Figure 3.3.5-1. 

Throughout the process, the rest energy is balanced by the energy of gravitation. In 
the course of the expansion, the rest energy of matter is fading away until zero at infinity 

when R4 → .  
At infinity in the future, all motion gained from gravity in the contraction will have 

been returned back to the gravitational energy of the structure. Mass will no longer be 
observable because the energy excitation of matter will have vanished along with the ces-
sation of motion. The energy of gravitation will also become zero owing to the infinite 
distances. The cycle of observable physical existence begins in emptiness and ends in 
emptiness where the mass does not express itself as observable matter. Mass as the sub-
stance of the expression of energy, however, is conserved throughout the cycle. The DU 
model does not exclude the possibility of a new cycle of physical existence. 

The rest energy, the energy of motion due to the motion of space in the fourth di-
mension, can be considered as a localized manifestation of the energy of matter, which is 
in counterbalance with the non-localized manifestation of the energy of matter, the ener-
gy of gravitation.  

We do not need to assume the existence of anti-matter to balance the rest energy 
of matter. 
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At infinity in the past, as at infinity in the future, the 4-radius of space is infinite. Mass 
exists, but as it is not energized it is not detectable. The energy of motion built up in the 
primary energy buildup is gained from the structural energy, the energy of gravitation. In 
contraction, space loses size and gains motion. In expansion, space loses motion and 
gains size.  

The buildup and disappearance of the physically observable Universe occurs as an 
inherently driven zero-energy process from emptiness at infinity in the past through 
singularity to emptiness at infinity in the future – or “essentially infinity” allowing cy-
cling universe. 

 
Figure 3.3.5-1. The twofold nature of matter at rest in space is manifested by the energies of mo-
tion and gravitation. The intensity of the energies of motion and gravitation declines as space ex-
pands along the 4-radius.  
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4. Energy structures in space 

The primary energy buildup is described in terms of the dynamics of whole space in 
the direction of the 4-radius. The primary energy buildup creates the energy of motion 
against reduction of the global gravitational energy. 

In the primary energy buildup, the total mass of the Universe is considered as being 
uniformly distributed throughout space. Mass in hypothetical homogeneous space is con-
sidered as unstructured wavelike dark matter energized by the motion of space in the 
fourth dimension. Conversion of dark matter into electromagnetic radiation and primor-
dial nucleons may occur at the turnover of the contraction phase into the ongoing expan-
sion phase, and further to atomic structures in nucleosynthesis as assumed in Big Bang 
cosmology. Such processes may also occur in local mass center buildup, in secondary en-
ergy buildup processes in space. The secondary energy buildup processes are assumed to 
conserve the total energy and the overall zero-energy balance in space.  

The Dynamic Universe model does not give an unambiguous answer to the conver-
sion of unstructured matter into electromagnetic radiation or the environment for nucle-
osynthesis. Such processes may occur as a consequence of certain asymmetry in passing 
the singularity when the contraction of space is turned into expansion. Such a process 
could have much the same properties as assumed to have taken place in the first seconds 
of the Big Bang. It turns out that the conditions in the vicinity of local singularities in 
space, like in the centers of galaxies, may also be favorable for conversions of dark matter 
to radiation and baryonic matter conversions. 

The energy structures of DU-space are described in terms of energy frames from ga-
lactic structures to atomic objects and elementary particles. Conservation of the energy 
excitation created in the contraction and expansion of space creates an unbroken chain of 
frames linked from the smallest elementary particle to the whole of spherical space. The 
Earth along with the objects bound to its gravitational frame can be regarded as an energy 
object in the solar gravitational frame, and an electron in an atom as an energy object in 
the electromagnetic frame of the nucleus.  

While the dynamics of space as a homogeneous spherical structure produces the basis 
for predictions at a cosmological scale, the analysis of energy structures in space produces 
the basis for predictions for local phenomena and celestial mechanics.  

DU space is characterized by a system of nested energy frames. Relativity in DU space 
appears as relativity of local to the whole – any local energy state is related, through the 
system of nested energy frames, to the state of rest in hypothetical homogeneous space, 
which serves as a universal frame of reference. 

Relativity in DU space is a consequence of the conservation of total energy in space. 
Relativity is expressed in terms of locally available energy, not in terms of locally distorted 
metrics as it is expressed in the theory of relativity.  
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4.1 The zero-energy balance 

The initial condition produced by the primary energy buildup is regarded as a homo-
geneous spherical entity with all mass at rest, i.e. with momentum only in the direction of 
the 4-radius of the structure. Accordingly, the buildup of inhomogeneity requires motion 
of mass in space. The buildup of a local mass center in space is described in terms of free 
fall of mass conserving the primary energies of motion and gravitation created in the pri-
mary energy buildup of space.  

4.1.1 Conservation of energy in mass center buildup 

Mass center buildup in homogeneous space  

The primary energy buildup is based on spherical symmetry, which results in motion 
in the direction of the 4-radius of spherical space (the direction of the imaginary axis in 
hypothetical homogeneous space). The energy of the imaginary motion is balanced by 
gravitational energy from all mass in space, uniformly in all space directions relative to 
any space location. As a result of spherical symmetry, the gravitational energy of all mass 
is equivalent to inherent gravitational energy due to the mass equivalence M” located in 
the direction of the imaginary axis at distance R” in the imaginary direction, which in ho-
mogeneous space is equal to the direction of the 4-radius of spherical space, R”0 = R4. 
The zero energy balance of motion and gravitation for a mass m at rest in hypothetical 
homogeneous space is expressed in equation (3.3.1:4) [see Figure 4.1.1-1(a)] as 

( ) ( ) ( ) 0 0 0 00 0 0

0 0

" "
" " " " 0

" "
tot m g

GmM GmM
E E E c c mc

R R
= + = − = − =p  (4.1.1:1) 

In hypothetical homogeneous space, the energy excitation of motion and gravitation 
expressed in equation (4.1.1:1) appears in the direction of the Im0 axis in the direction of 
4-radius of space. 

In Section 3.2.2, the mass equivalence M” and the gravitational energy E”g(0) were cal-
culated by integrating the effects of masses dM in volume differentials in spherical shells 

surrounding a mass m at the center. Let's assume that a mass M = dM(r δ) at distance r  

(m ≪ M ≪ M" and r  ≪ R4) is gathered up and condensed into a mass center at distance 

r  in a space direction denoted by the Re0 axis. Due to the removal of mass M from the 
symmetry, the global gravitational energy, the gravitational energy due to the remaining, 
uniformly distributed mass, is reduced by (see equation (3.2.2:1)) 

0

" Δ "g g

Gm Gm
dE dM M E

D r
= − = − =  (4.1.1:2) 

where D = r0 is the distance (radius) of a spherical volume differential with mass dM = ρ· 
4πD 2dr0 around the test mass m. 
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Figure 4.1.1-1. The balance of motion and gravitation. (a) The initial condition for energy interac-
tions in space is the state of rest in hypothetical homogeneous space. In homogeneous space, mass 
is uniformly distributed throughout space and the imaginary axis is in the direction of the 4-radius 
of space. An object at rest in homogeneous space has the energies of motion and gravitation in the 
imaginary direction only. (b) The uniformity of mass is disturbed, and the initial symmetry of mo-
tion and gravitation is broken when a mass center M is formed at a distance r0 from a mass m in 
space in the direction of the Re0 axis. Gravitational force Fg(local) towards the mass M is created. (c) 
The balance between the imaginary energies of motion and gravitation is re-established when local 
space is tilted by angle ψ. The rest energy Erest(0) is reduced through the buildup of the real part E’(ψ) 

as the energy equivalence of the momentum of free fall. An equivalent reduction ΔE”g = Erest 
=E”g(ψ) – E”g(0) occurs in the global gravitational energy. In the direction of the Reψ axis the appar-
ent distance from m to mass center M is denoted as rψ. 

The formation of mass center M at distance r0 from mass m in the direction of the real 
axis Re0 in space creates a net gravitational force resulting in free fall of mass m towards 
mass M, Figure 4.1.1-1(b). 

Creation of the momentum of free fall in space, orthogonal to the momentum in the 
fourth dimension, while simultaneously conserving the total primary momentum, requires 
that the direction of the fourth dimension becomes tilted. Tilting of space near a mass 
center creates the momentum of free fall by dividing the primary momentum, p0 = mc0, in 
the direction of the R0-axis, into orthogonal components with the real part, the momen-
tum of free fall, pff , in the direction of the tilted space, the Reψ -axis, and the imaginary 
part, p"ff, in the direction of the Imψ axis perpendicular to the tilted space, Figure 4.1.1-
1(c). 

The total energy of motion is now expressed as the energy related to the vector sum 
of the local imaginary momentum (rest momentum) and the escape momentum back to 
homogeneous space (far enough from mass M)  

( ) ( ) ( )

( ) ( )

0 0 0 00 ,

2
2

0

i " " ' "ψ ψm m tot ψ esc ψ

ψesc ψ

E E c c p

c p mc
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= +

p p i

 (4.1.1:3) 
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where p'esc(ψ) is the escape momentum (opposite to the momentum of free fall, p'esc(ψ) = – 
p'ff(ψ)) from space tilted by angle ψ back to homogeneous space. This simply means, that 
compared to the rest energy in homogeneous space, the rest energy of mass m at distance 
r0 from mass M in space is reduced by the kinetic energy of free fall 

( ) ( ) ( ) ( )
2

2

0Δ " ψ ψkin ff m ψ ff ψ
E E c p mc mc

 
= = + − 

 
 (4.1.1:4) 

where |pff (ψ )|= |pesc (ψ )|, and the rest energy of mass m in space tilted by angle ψ is 

( ) ( ) 0 0" ψm ψ rest ψ
E E c mc c mc= = =  (4.1.1:5)  

where the local velocity of light c is equal to cψ, the local imaginary velocity of space in the 
direction of the Imψ axis.  

In a complete symmetry with equation (4.1.1:3), the global energy of gravitation in 
space tilted by angle ψ can be expressed in complex form with the locally observed global 
gravitational energy opposite to the local imaginary energy of motion E”g = –E”m = –
c0|p"| and the real part opposite to the energy equivalence of the escape momentum 
E’g = –E’m = –c0|pesc|, Figure 4.1.1:1(c) 

( ) ( ) ( ) ( ) ( ) ( )
2 2

0 0 ,
i " ' i " ' "ψg g tot ψ g ψ g ψ g ψ g ψ

E E E E E E= = + = +  (4.1.1:6)  

where, with reference to equations (3.2.2:7) and (4.1.1:2), the locally observed global en-

ergy of gravitation E”g(ψ) = E”g(0) – Eg(ψ) is 

( )
0 0 0 0

" " "
" 1

" " "
g ψ

GM m GMm GM m MR
E

R r R M r

   
= − − = − −   

   
 (4.1.1:7)  

The term MR”/M”r0 in (4.1.1:7) is referred to as the gravitational factor δ. Applying 
the zero-energy balance in equation (3.3.5:1), the gravitational factor defining a gravita-
tional state in tilted space at distance r0 from mass center M formed in hypothetical ho-
mogeneous space can be expressed in the forms 

2

0 0 0

"

"

MR GM
δ

M r r c
= =  (4.1.1:8) 

Substitution of (4.1.1:8) into (4.1.1:7) gives  

( ) ( ) ( )Σ

02

0 0 0

"
" 1 1

"
gg ψ

GM M GM
E E δ

R r c

 
= − − = − 

 
 (4.1.1:9)  

In terms of the tilting angle ψ the global gravitational energy E”g(ψ) in tilted space is 

( ) ( )0
" " cos

gg ψ
E E ψ=  (4.1.1:10)  

Combining equations (4.1.1:9) and (4.1.1:10) the cosine of the tilting angle can be ex-
pressed in terms of the gravitational factor δ 

cos 1ψ δ= −  (4.1.1:11)  

Equations (4.1.1:3) and (4.1.1:6) express the conservation of the primary energies of 
motion and gravitation as a consequence of the tilting of local space near mass center M.  
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Figure 4.1.1-2. As a consequence of the conservation of the primary energies of motion and gravi-
tation, the buildup of a mass center in space bends the spherical space locally causing a tilting of 
space near the mass center. The local imaginary axis is always perpendicular to local space. As a 
consequence, the local imaginary velocity of space is reduced in tilted space.  

Conservation of mass and the primary energy in free fall in space through tilting of 
space near mass centers means that the velocity of free fall is obtained from the expan-
sion velocity of space 

( ) 0 sin
ff ψ

v c ψ=  (4.1.1:12) 

The local velocity of light equal to the imaginary velocity in tilted space can be ex-
pressed (Figure 4.1.1-2) 

( )0 0cos 1ψc c c ψ c δ= = = −  (4.1.1:13) 

where the last form is obtained by substitution of (4.1.1:11) for cosψ. For consistency 

with common praxis the local velocity of light is denoted as c (c = cψ). 
Substitution of (4.1.1:13) for c in (4.1.1:5) gives the locally available rest energy of an 

object at rest at gravitational state δ in tilted space  

( ) ( ) ( ) ( )0 0 0 0
cos cos 1

rest restrest ψ
E c mc ψ E ψ E δ= = = −  (4.1.1:14) 

For an object at rest in space tilted by angle ψ, the zero-energy balance of the local rest 
energy and global gravitational energy is expressed as the equality of equations (4.1.1:9) 
and (4.1.1:14) as 

( ) ( ) ( ) ( ) ( ) ( )0 0
" " 1 " 1

rest grest ψ g ψ
E E E δ E δ=  − = −  (4.1.1:15) 

When related to the local velocity of light in tilted space (4.1.1:13), the velocity of free 
fall (4.1.1:12) becomes 

( ) 0
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sin tan
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c ψ
v c ψ c ψ

ψ
= = =  (4.1.1:16) 
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Mass center buildup in real space 

As a result of the conservation of total gravitational energy in the buildup of mass 
centers real space “the smooth 4-sphere” becomes textured by dents formed around mass 
centers, Figure 4.1.1-3. 

Mass center buildup occurs in many steps. Gathering of mass into a mass center in 
tilted space can be described in full analogy to the buildup of a “first order” mass center 
in hypothetical homogeneous space. The imaginary energies of motion and gravitation at 
a distance rA from mass a center MA, where space is tilted by angle ψB relative to homo-
geneous space, are  

( ) ( ) 0 00
" " cos cosB Bm B m

E E ψ c mc ψ= =  (4.1.1:17) 

and 

( ) ( )0

0

"
" " cos cos

"
B Bg B g

GM m
E E ψ ψ

R
= = −  (4.1.1:18) 

When a mass center MB is created at distance rA from MA via accumulation of nearby 
mass, a local sub-dent is formed in tilted space in gravitational frame MA. The tilted space 
at distance rA from MA serves as apparent homogeneous space for the sub-dent formed 
around mass center MB. The buildup of MB occurs in full analogy to the buildup of mass 
center MA in hypothetical homogeneous space, Figure 4.1.1-4.  

The imaginary energies to be conserved in the accumulation of mass into a local mass 
center MB at distance rB from location B in tilted space are the imaginary energies of mo-
tion and gravitation E”m(B) and E”g(B) in equations (4.1.1:17) and (4.1.1:18), respectively. 
For mass m in the sub-dent around MB at distance rB from mass center MB the imaginary 
energies of motion and gravitation, the local rest energy and global gravitational energy 
are  

( ) ( )0
" " cos " cos cosm Bm B m

E E ψ E ψ ψ= =  (4.1.1:19) 

and  

( ) ( )0
" " cos " cos cosg Bg B g

E E ψ E ψ ψ= =  (4.1.1:20) 

where ψ is the tilting angle of the local space at distance rB from mass center MB. 

Figure 4.1.1-3. Real space is not a 
smooth 4-sphere but textured by dents 
around mass centers in space. The radius 
R0 of homogeneous space is interpreted 
as average 4-radius of “free space” be-
tween mass centers.  

R0 
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Figure 4.1.1-4. The profile of space in the vicinity of local mass centers. Each mass center causes 
local tilting of space in its neighborhood relative to the surrounding space referred to as apparent 
homogeneous space and, finally, to hypothetical homogeneous space. In the figure the MA-frame 
has been formed in hypothetical homogeneous space where all mass is uniformly distributed and 

where the imaginary axis has the direction of the 4-radius of space, Im0(A) Im0 R0. The local im-

aginary axis at test mass m is denoted as Im and the distance from m to the local mass center MB as 
rB. 

Generally, the imaginary energies of motion and gravitation of mass m in the n:th sub-
frame can be related to imaginary energies in the (n–1):th frame which serves as the par-
ent frame and the apparent homogeneous space to the local frame. The local imaginary 
energy of motion at a location where space in the local frame has tilted by an angle ψn is 

( ) ( ) ( )0 1 01
" " cos 1n n nm n m n

E E ψ c mc δ c mc−−
= = − =  (4.1.1:21) 

where the local velocity of light c is determined by the velocity of space in the local fourth 
dimension. The local velocity of light is related to the velocity of light in the parent frame 
as 

( )1 1cos 1n n n n nc c c ψ c δ− −= = = −  (4.1.1:22) 

or 

( )0 1δ δc c c δ= = −  (4.1.1:23) 

where the gravitational factor δ means the gravitational factor of the object in local frame. 
The velocity cδ , which is generally denoted as c, means the local velocity of light at a gravi-
tational state defined by δ, and the velocity c0δ means the velocity of light in an apparent 
homogeneous space of the local frame, Figure 4.1.1-5.  
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Figure 4.1.1-5. The velocity of light is determined by the velocity of space in the local fourth di-
mension. Following the conservation of the total energy in local mass center buildup, the local 
velocity of light is related to the velocity of light in apparent homogeneous space of the local 
frame. Using notations based on the local gravitational factor δ, the local velocity of light is 
c =cδ =cn , and the velocity of light in apparent homogeneous space of the local frame c0δ =cn–1 .  

The imaginary energy of gravitation in the n:th frame is 

( ) ( ) ( )1

1

" "
" " cos 1

" "
ng n g n

n n

GM m GM m
E E ψ δ

R R
−

−

= = − − = −  (4.1.1:24) 

where the local apparent 4-radius of space R”, which is the local apparent distance to 
mass equivalence M”, is 

1 0" "
" " or " "

1 1

n δ
n δ

R R
R R R R

δ δ

−= = = =
− −

 (4.1.1:25) 

Following the same procedure for the imaginary energies in the parent frame and “the 
grandparent frames” the local imaginary energies of motion and gravitation are finally 
related to the imaginary energies of motion and gravitation in hypothetical homogeneous 
space as 

( ) ( ) ( )0 0 00

1 1

" " cos 1
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i i
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and 
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 (4.1.1:27) 

respectively.  
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As implicitly stated in equations (4.1.1:26) and (4.1.1.27) the local velocity of light c, 
and the local apparent distance R” to mass equivalence M” are 

( )0

1

1
n

n i

i

c c c δ
=

= = −  (4.1.1:28) 

and 

( )0

1

" " " 1
n

n i

i

R R R δ
=

= = −  (4.1.1:29) 

where the gravitational factor δi is 
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i i i δ δ i
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δ ψ

M r r c c r c c r c

−
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= − = = = 
 

 (4.1.1:30) 

The notation c means generally the velocity of light in the local frame and c0δ the veloc-
ity of light in the apparent homogeneous space of the local frame. The notation R” means 
the apparent local distance to mass equivalence of space M”,  
and r means the flat space distance to the mass center in the local gravitational frame. In 
space directions, the distance r0δ means the flat space distance to the mass center of the 
local gravitational frame, i.e. the distance in the direction of the apparent homogeneous 
space of the local gravitational frame, and the distance rδ means the distance in the direc-
tion of local space, Figures 4.1.1-6 and 4.1.1-7. 

 
Figure 4.1.1-6. The imaginary energies of motion and gravitation in a δ state have the direction of 
the local imaginary axis Im = Imδ tilted by an angle ψ from the direction of the imaginary axis Im0δ  
in apparent homogeneous space. The local rest energy Erest  = E”m is balanced by the locally ob-
served global gravitational energy E”g. The distance r0δ is the flat space distance from m to the local 
mass center M measured in the direction of the apparent homogeneous space of the local gravita-
tional frame, the Re0δ axis. The distance rδ  is the apparent distance to M in the direction of the 
local Reδ axis. The physical distance following the curved shape of space is rphys . 
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Figure 4.1.1-7. As demanded by the conservation of the total momentum and the energies of mo-
tion and gravitation, space is tilted in the direction of the fourth dimension near mass centers. The 
imaginary axis of local space makes an angle ψ with the imaginary axis of apparent homogeneous 
space. The total momentum p"0 of mass m in homogeneous space is conserved as the vector sum 
of the local imaginary momentum p"δ and the escape momentum p'esc(δ) in the direction of the local 
real axis. 

The distance definitions, the apparent distance rδ in the direction of the local Reδ  axis, 
the flat space distance r0δ in the direction of the Re0δ axis, and the physical distance meas-
ured along the curved space, are illustrated in Figure 4.1.1-6. 

The local gravitational energy, the energy of gravitation converted into kinetic energy 
in free fall from infinite distance to distance r0δ in the local gravitational frame, is 

( )
0

ΔG g δ

δ

GMm
E E

r
= = −  (4.1.1:31) 

EG describes release the global gravitational energy due to the tilting of space as a con-
sequence of the buildup of mass center M, Figure 4.1.1-7.  

As illustrated in equation (4.1.1:31), the local gravitational energy EG has the Newtoni-
an form for distance r0δ measured in the flat space direction. Newtonian gravitation is ex-
pressed in terms of the distance rδ measured in the direction of the local Re axis  
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= − = −  (4.1.1:32) 

4.1.2 Kinetic energy 

The buildup of kinetic energy in free fall and at constant gravitational potential is 
compared and a general expression for kinetic energy is introduced. In free fall the veloci-
ty in space is obtained against reduction of the velocity of space in the local fourth di-
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mension and the kinetic energy against reduction in the locally available rest energy. Ki-
netic energy at constant gravitational potential requires an insertion of energy from a local 
source such as Coulomb energy, which is described as an insertion of mass equivalence 
increasing the mass of the object in motion. 

The connection between kinetic energy and momentum is analyzed. It is shown that 
the imaginary part of kinetic energy is the work done against the gravitational energy of 
the total mass in spherical space — thus giving a quantitative expression to Mach’s prin-
ciple. 

Kinetic energy obtained in free fall 

The kinetic energy of an object moving in a local frame is defined as the total energy of 
motion minus the energy of motion the object has at rest in the local frame (2.1.4:8). The 
total energy of motion of an object in free fall from the state of rest far from the local 
mass center is, Figure 4.1.2-1 

( ) ( ) ( ) ( )0 0 0 0 0Re Im 0 Imtotal δm total δ δ
E c c c c mc= = + = =p p p p  (4.1.2:1) 

The energy of motion of an object at rest in gravitational state δ is the imaginary ener-
gy of motion in the local fourth dimension 

( ) ( )0 0 0Im δrest δ δ
E c c mc c mc= = =p  (4.1.2:2) 

and the kinetic energy obtained in free fall from the state of rest far from the local mass 
center is  
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= = − − =   

p
 (4.1.2:3) 

Equation (4.1.2:3) means that kinetic energy in free fall is obtained against reduction 
of the local rest energy via tilting of space and the associated reduction in the local veloci-
ty of light. The total energy of motion, as the sum of local rest energy and the kinetic en-
ergy of free fall, is conserved. 
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Figure 4.1.2-1. Kinetic energy in 
free fall by change in the local rest 
momentum via tilting of space by 

ψ = /2 – φ. The total energy of 
motion is conserved. The local rest 
energy is reduced.  
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Kinetic energy obtained via insertion of mass 

In free fall, kinetic energy is obtained against reduction of the local rest energy via re-
duction of the velocity of light in tilted space. In free fall, mass is conserved. Buildup of 
kinetic energy at constant gravitational potential, when the velocity of light is constant, 
requires the insertion of local energy in form of mass or mass equivalence to create mo-

mentum in a space direction. Insertion of a mass m via acceleration of a charged mass 
object initially at rest in a Coulomb energy frame (see Section 5.1.2) adds to the total en-
ergy of motion by the Coulomb energy released 

0 0Δ Δ Δkin EM EME E c c m c c m= = =  (4.1.2:4) 

( )
1 2 0

0 0

2 1

0

1 1
Δ "

4

Δ

rest EMm tot

rest EM

q q μ
E E E E c c

π r r

E m c c

 
= + = + − 

 

= + 

 (4.1.2:5) 

where mEM is the mass equivalence released by Coulomb energy. The kinetic energy 
gained is equal to the Coulomb energy released. As given in the last term of (4.1.2:5) the 

Coulomb energy can be expressed in terms of Coulomb mass equivalence mEM  

0 0Δ Δ Δkin EM EME E c c m c c m= = =  (4.1.2:6) 

and the total energy of motion can be expressed in form 

( ) ( )0 0 0Δ Δrest kinm tot
E E E c mc c m c c c m m= + = +  = +  (4.1.2:7) 

A complex presentation of the total energy of motion illustrates the buildup of the 
momentum and the total energy of motion as the orthogonal sum of the momentum at 
rest in the imaginary direction and the momentum created in space  

( ) ( )

( ) ( ) ( )

¤

0 0 0 0

22 2

0

' i " Δ  

Δ

m tot
E c c c m m mc

c mc m m βc

= = + = + +

= + +

p p p v i
 (4.1.2:8) 

where the velocity in space is denoted as v = βc r̂ . The increased mass (m+m) contrib-
utes to the real component of the momentum via acceleration in Coulomb field, Figure 
4.1.2-2. 

Combining of equations (4.1.2:7) and (4.1.2:8) gives 

( ) ( )
2 22 2Δ Δm m m m m β+ = + +  (4.1.2:9) 

and further, by solving the total mass, mβ, of the moving object, 

2
Δ

1
β rel

m
m m m m

β
= + = =

−
 (4.1.2:10) 

As shown by equation (4.1.2:10) the increased mass resulting from the additional mass 

m needed to obtain velocity v =βc in space is equal to the relativistic mass or relativistic 
mass mrel in the theory of relativity.  
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Figure 4.1.2-2. The momentum p' = (m+Δm)v in a space direction results in velocity v = ccosφ in 
space. Velocity c is the local velocity of light equal to the local imaginary velocity of space. 

The increase of the mass of an object in motion in space is not a property of the velocity, but the con-
tribution of mass or mass equivalence from the system releasing the energy converted into kinetic energy.  

Conversion of gravitational energy into kinetic energy in free fall is not associated with exchange of 
mass but the kinetic energy is obtained against reduction of the rest energy via reduction of the velocity of 
space in the local fourth dimension due to tilting of space. 

Applying the increased mass mβ = m+Δm = mrel the total energy of motion can be ex-
pressed   

¤

0 0 0

2

0
0 2 2

' i " i 

1
1 1

tot βE c p c p p c m βc mc

c mcβ
c mc

β β

= = + = +

= + =
− −

 (4.1.2:11) 

Substitution of (4.1.2:11) for Em(tot) in (4.1.2:7) gives the kinetic energy 

( ) 0
2

1
1

1
kin restm tot

E E E c mc
β

 
 = − = −
 − 

 (4.1.2:12) 

The expression for the total energy of motion in (4.1.2:11) and kinetic energy in 
(4.1.2:12) are equal to the total energy and kinetic energy derived based on the Lorentz 

transformation in the special theory of relativity (assuming c0  c ). In the DU framework, 
there is no need or role for the Lorentz transformation. Following the conservation of 

the total energy, the mass increase m in the buildup of kinetic energy is just the mass or 
mass equivalence transferred from the system releasing the energy for the buildup of ki-
netic energy. 

In (4.1.2:11) the real component of the complex energy of motion is  

( )
0

0 0
2

' '
1

βm tot

c mc β
E c c m βc

β


= = =

−
p  (4.1.2:13) 

where the momentum in space is 
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2
ˆ'

1
β β

m
m m βc

β
= = = =

−
p p v v r  (4.1.2:14) 

which corresponds to the momentum in the framework of special relativity but, again, 
without Lorentz transformation, relativity principle or postulated invariance of the veloci-
ty of light. 

Kinetic energy obtained in free fall and via the insertion of mass  

Obtaining of kinetic energy in free fall in gravitation and via the insertion of mass 
equivalence at constant gravitational potential, where the local velocity of light is con-
stant, can be compared by studying equations (4.1.2:3) and (4.1.2:6) 

( ) ( ) 0 0Δ
Δ Δ

kin ckin ff
E E c c m c= = = p     (4.1.2:15) 

( ) 0 0 0 0Δ 2

1
Δ Δ 1

1
kin m

E c c c m c mc
β

 
 = =  = −
 − 

p  (4.1.2:16) 

Equation (4.1.2:15) describes the kinetic energy obtained from gravitational energy in 
free fall from apparent homogeneous space to gravitational state δ in the local gravita-
tional frame, and equation (4.1.2:16) describes the kinetic energy obtained from local po-
tential energy such as Coulomb energy in the local energy frame. In the case of free fall, 
the kinetic energy is obtained against reduction of the velocity of space in the local fourth 
dimension, which also means reduction of the local velocity of light. In order to acquire 
velocity at a constant gravitational potential where the velocity of light is constant there 

must be a source for mass exchange to supply the mass increase m, Figure 4.1.2-3.  
The two mechanisms for the building up of kinetic energy can be expressed as 

( )0 0Δ Δ ΔkinE c c m c c m= = +p  (4.1.2:17) 

where the first term refers to kinetic energy obtained in free fall in a local gravitational 
frame and the second term kinetic energy obtain via insertion of mass in a local energy 
frame. 

 
Figure 4.1.2-3. (a) Kinetic energy in free fall by change in the local rest momentum via tilting of 
space. (b) Kinetic energy by insert of excess mass. 
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Buildup of kinetic energy in free fall in a gravitational field conserves the total energy of the falling ob-
ject. Buildup of kinetic energy via insertion of mass increases the total energy of the object put into motion. 

4.1.3 Inertial work and a local state of rest 

Energy as a complex function 

In the DU framework, it is useful to study energy as a complex function. The complex 
presentation of the energy of motion gives energy vector character that allows a direct 
linkage of the energy of motion to momentum. In the case of gravitational energy, the 
vector presentation shows the direction of the gradient of the energy. The absolute values 
of the complex energies restore the conventional concept of scalar energy. 

The real and imaginary parts of the complex energy of motion can be referred to as 
energy equivalences of momenta in the direction of the real axis and the imaginary axis, 
respectively. In the complex presentation, momentum is directly proportional to its energy equivalence.  

Momentum is presented in terms of the vector components in the direction of the 
imaginary and real axes. Choosing the real axis in the direction of the real component of 
the momentum, complex momentum can be expressed in terms of its scalar components 
in the imaginary and real directions 

¤ ¤' i " or ' i "p p p= + = +p p p  (4.1.3:1) 

The complex energy of motion is expressed 

( )¤ ¤

0 0 0 0' i " ' i c " ' i "mE c p c p p c p p E E= = + = + = +  (4.1.3:2) 

where the two last forms show the energy equivalences of momentum in the direction of 
real axis and imaginary axis. The complex presentation allows the polar coordinate ex-
pression 

( ) ( )¤ cos i sinm m tot
E E φ φ= +  (4.1.3:3) 

which relates the real and imaginary components of the complex energy to the total ener-
gy via the phase angle φ. The complex presentation of energy is essential for the study of 
the balance between the energy of motion and the global energy of gravitation in the im-
aginary direction and for a detailed analysis of the energy balances in space (in the direc-
tion of the real axis) and in the direction of the imaginary axis. 

The concept of internal energy  

The total energy of motion in (4.1.2:11) can be expressed in complex form  

( ) ( )¤ ¤

0 0 0
2 2

i i
1 1

φm tot

mβc β
E c p c mc c mc

β β

   
   = = + = +
   − −   

 (4.1.3:4) 
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Figure 4.1.3-1. The turn of the total momentum due to momentum p'=(m+m)v added in a space 

direction results in velocity v = c cosφ in space. Velocity c is the local velocity of light equal to the 
local imaginary velocity of space. 

or  

( ) ( ) ( )

( ) ( )
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 (4.1.3:5) 

where the first term on the last line of (4.1.3:5) is referred to as the internal energy of motion, 
EI with the absolute value equal to the energy of motion the object possesses at rest in 
the local frame (the rest energy at φ = π/2), Figure 4.1.3-1 

( )¤ 2

0 0 0

2

0 0

cos i sin i 1

i 1

IE c mc φ φ c m cβ c mc β

c m v c mc β

= + =  + −

=  + −
 (4.1.3:6) 

The corresponding complex expression for the kinetic energy is  

( )¤ 2

0 0 0Δ cos i sin Δ i Δ 1kinE c mc φ φ c m v c c m β= + =  + −  (4.1.3:7) 

Figure 4.1.3-2 illustrates the structure of the total energy of motion as the sum of the 
complex internal energy and the kinetic energy as obtained by regrouping the real and 
imaginary parts in equation (4.1.3:5) 

( ) ( ) ( )¤ ' ' i " "I kin I kinm tot
E E E E E= + + +  (4.1.3:8) 

The scalar value of the internal energy is equal to the rest energy Erest (0) of the object at 
rest. As a complex quantity, the internal energy is “turned” to angle φ relative to the real 
axis. The real part E’I of the internal energy contributing to the momentum in space is 
created against a reduction in the imaginary part E”I. 

As the counterpart of the internal energy EI the internal momentum p¤
I is 

( )¤ 2i 1 cos i sinIp m v mc β mc φ φ=  + − = +  (4.1.3:9) 

(see Figure 4.1.5-3). 
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Figure 4.1.3-2. Illustration of the components of the internal energy and kinetic energy of an ob-
ject moving at velocity βv in a local energy frame. The effect of the imaginary part of the kinetic 
energy E”kin is a reduction of the global energy of gravitation of the moving object; it is the inertial 
work done against the global gravitation via central acceleration relative to the equivalence M” at 
the center of spherically closed space.  

 
Figure 4.1.3-3. (a) The real part of the total momentum is the momentum observed in space. The 
internal momentum can be illustrated as the rest momentum prest(0) of the object turned by angle φ 
with respect to the real axis. (b) The real part of the internal momentum contributes to the mo-
mentum in space by p’I = mv. The imaginary part of the internal momentum serves as the rest 
momentum of the object p”I = mrest(β) c. 
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The absolute value of the internal momentum is equal the absolute value of the mo-
mentum of the object at rest, the rest momentum prest(0). The real part of the internal mo-
mentum, p’I = mv, contributes to the real component of the momentum of the object in a 
space direction. The imaginary part of the internal momentum is identified as the rest 
momentum of the moving object 

( ) ( )
2 2

0
" 1 1I restrest β

p p mc β p β= = − = −  (4.1.3:10) 

The imaginary velocity of an object in space is determined by the velocity of 
space in the fourth dimension, which means that the reduction of the imaginary 
momentum due to the buildup of momentum in space means reduction of the 
rest mass of the moving object.  

The imaginary part of the internal momentum is the rest momentum of the 
object moving at velocity v = βc in the local frame in space 

( ) ( )
2 2

0
1 1

restrest β
m m β m β= − = −  (4.1.3:11) 

Applying rest mass mrest(β) the rest energy of an object moving at velocity βc in the local 
frame is 

( ) ( ) ( ) ( )
2

0 0 00
1

restrest β rest β rest β
E c p c m c β c m c= = − =  (4.1.3:12) 

The reduction of the imaginary part of the internal energy due to a reduction of the 
rest mass mrest(β ) means that the reduction affects also the global gravitational energy E”g,(β )  

( )

( ) 2
" "

" 1
" "

rest β

g β

GM m GM m
E β

R R
= − = − −  (4.1.3:13) 

Reduction of the global gravitational energy due to motion in space does not require 
“an immediate interaction” with all other mass in space — it is just the consequence of 
the reduction of the local rest mass of the moving object. 

For the moving object, the balance of the imaginary energies of motion and gravitation is obtained as 
the sum of (4.1.3:12) and (4.1.3:13) as 

( ) ( )" " 0
rest β g β

E E+ =  (4.1.3:14) 

Reduction of rest mass as a dynamic effect 

In spherically closed space, any motion in space is central motion relative to mass 
equivalence M” at distance R” in the fourth dimension. Accordingly, the reduction of the 
rest mass and the related rest momentum and rest energy of the moving object can be 
interpreted as consequences of the central force caused by motion in space.  

In a simplified analysis, we can express the central force created by momentum p in 
homogeneous space due to the curvature of space by radius R”0 perpendicular to mo-
mentum p (a more detailed analysis is given in Section 4.1.8) 
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The global gravitational force as the gradient of the global gravitational energy of mass 
mβ is 
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 
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where the last form is based on the zero energy balance of motion and gravitation in DU 
space (3.3.1:4) 
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GM m
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R
=  (4.1.3:17) 

The net force in the fourth dimension is obtained as the sum of the centrifugal force 
in (4.1.3:15) and the gravitational force in (4.1.3:16) 
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  (4.1.3:18) 

which means the balance of the imaginary energies of motion and gravitation  

( ) ( )

( ) ( )
0 0

"
or

" "

rest β g β

rest β g β

E E
E E

R R
= =  (4.1.3:19) 

The zero-energy balance of motion and gravitation in the fourth dimension is ob-

tained equally for mass 21β relm m m β= = −  moving at velocity βc in its parent frame, 

and for mass  ( )
21

rest β
m m β= − at rest in a local frame moving at velocity βc in the par-

ent frame space, Figure 4.1.3-4. 

The local state of rest in the DU is bought against reduction of the locally available rest energy in the 
moving frame. The local state of rest is characterized by the zero-energy balance between motion and gravi-
tation in the fourth dimension. 

The imaginary part of the kinetic energy is the work done in reducing the global gravi-
tational energy – and equally, the rest energy of the object in motion 

( ) ( ) ( )0
" " " Δ Δkin restg g β g global

E E E E E= − = =  (4.1.3:20) 

Equation (4.1.3:20) means a quantitative expression of Mach’s principle by identifying 
the inertial work as the imaginary part of kinetic energy. The real part of kinetic energy 
contributes to the momentum in space 

Δ ' Δp m v=   (4.1.3:21) 
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Figure 4.1.3-4. (a) The gravitational force of mass equivalence M” on mass mβ  moving at velocity v 
is reduced by the central force FC, which makes it equal to the gravitational force of mass equiva-
lence M” on mass mrest(β)  at rest in the local frame as illustrated in figure (b). 

4.1.4 The system of nested energy frames 

With reference to equation (4.1.3:12), the rest energy of object m at rest in frame n 
moving at velocity βn in its parent frame n–1 is 

( ) ( )
2

1
1 nrest n rest n

E E β
−

= −  (4.1.4:1) 

where Erest(n –1) is the rest mass of the object at rest in frame n–1. Frame n–1, carrying mass 
m in frame n, moves at velocity βn–1 in frame n–2. The rest energy of mass m can now be 
related to the rest energy mass m has at rest in frame n–2 as 

( ) ( )
2 2

12
1 1n nrest n rest n

E E β β−−
= −  −  (4.1.4:2) 

(see Figure 4.1.4-1). 

 
Figure 4.1.4-1 Motion of frame n with mass m at velocity βn in frame n–1, which is moving at ve-
locity βn –1 in its parent frame (n –2).  
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Equation (4.1.4:2) can be expressed in terms of mass m(n) as 

( ) ( ) ( )
2 2

0 0 12
1 1n nrest n rest n rest n

E c c m c c m β β−−
=  =  −  −  (4.1.4:3) 

where, at constant gravitational potential, both c0 and c are constants and mass m(n) is re-
lated to mass m(n–2) as 

( ) ( )
2 2

12
1 1n nrest n rest n

m m β β−−
= − −  (4.1.4:4) 

When frame (n–2) is in motion at velocity β(n –2) in frame (n–3) which is the parent 
frame to frame (n–2), frame (n–3) at velocity in frame n–4 … etc., rest mass mrest(n) can be 
finally related to the rest mass m0 of the object at rest in hypothetical homogeneous space 

( )
2

0

1

1
n

irest n

i

m m β
=

= −  (4.1.4:5) 

Applying the rest mass in (4.1.4:5) the rest energy Erest(n ) becomes 

( ) ( )
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irest n rest
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E c m c c m c β
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= = −  (4.1.4:6) 

where c is the local velocity of light determined by the local gravitational state and the 
gravitational states of each of the nested frames in their parent frames as described by 
equation (4.1.1:28). Substitution of (4.1.1:28) for c in (4.1.4:6) gives a general expression 
for the rest energy of an object  
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E c m c m c δ β
=
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or simply as 

0restE c mc=  (4.1.4:8) 

where 
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and 
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c c c δ
=

= = −  (4.1.4:10) 

The complementary counterpart of the rest energy in equations (4.1.4:7) and (4.1.4:8) 
is the global gravitational energy [see equations (4.1.1:27–29)] 
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GM m GM m
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   (4.1.4:11) 

where m is the local rest mass given in (4.1.4:9) and R” is the local apparent distance to 
M” given in equation (4.1.1:29) as  
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By defining the frame factor χ 

( )0

1

1 1
n

i

i

c
χ δ

c =

 = −  (4.1.4:13) 

equation (4.1.4:8) for the rest energy can be written in the form 

2

0restE c mc χ cmc χ mc= =  =   (4.1.4:14) 

The expression of local rest energy in equation (4.1.4:14) is formally close to the ex-
pression of the rest energy in the formalism of the theory of relativity which postulates 
the velocity of light and the rest mass of an object as being invariants and independent of 
the gravitational environment and velocities that local mass is subject to in space. An es-

timate of the value of χ on the Earth is of the order of χ  1+10–6 (= 1.000001), which 
summarizes the effects of our gravitational state in the Earth, the Sun, the Milky Way, 
and the local galaxy group gravitational frames. In practice, in measurements of the effect 
of χ becomes included in the value of the rest mass. 

The system of nested energy frames is a central feature in the Dynamic Universe 
model. The nested energy frames create a link from any local energy frame to hypothet-
ical homogeneous space, which serves as a universal reference to all energy states in 
space. The system of nested energy frames is a consequence of the zero-energy principle 
and the conservation of the energy excitation built up in the primary energy build-up pro-
cess. The conservation of the primary energy in energy interactions in space is illustrated 
by the chain of nested energy frames in Figure 4.1.4-2.  

The state of rest in hypothetical homogeneous space serves as the universal reference 
for a state of rest in space. Each energy frame has its local state of rest characterized by 
the local rest mass, rest momentum, and rest energy. In the state of rest in a local energy 
frame, an energy object has its momentum in the local imaginary direction only.  

In a kinematic sense, for observing velocity as the rate of change in the distance be-
tween two objects, any object or state of motion, independent of the energy frame it be-
longs to, can be chosen as the reference for relative velocities. Relative velocity, however, 
is not the basis for the energy of motion or kinetic energy related to the observed veloci-
ty. Kinetic energy in a local system is always related to velocity relative to the state of rest 
of the local frame. 

The barycenter of hypothetical homogeneous space is in the center of spherically closed space. It is the 
reference at rest for the contraction and expansion of space in the direction of the 4-radius. 

4.1.5 Effect of location and local motion in a gravitational frame 

Local rest energy of orbiting bodies 

Let’s assume that a solid body MB rotates about a central mass MA (MA≫MB) at dis-
tance r0δ = rA at angular velocity ωA. The rest energy of mass in the rotating body at dis-
tance rA from the central mass MA is 
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Figure 4.1.4-2. The rest energy of an object in a local frame is linked to the rest energy of the local 
frame in its parent frame. The system of nested energy frames relates the rest energy of an object 
in a local frame to the rest energy of the object in homogeneous space. 
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Figure 4.1.5-1. The local gravitational frame around mass MB orbits central mass MA. Mass m or-
bits mass MB in the local gravitational frame at distance Δr from mass MB.  
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where Erest(A) means the rest energy of mass at rest in apparent homogeneous space of the 
MA gravitational frame, Figure 4.1.5-1. 

From different locations in an orbiting body MB with radius Δr (Δr ≪rA ) the distance 

to the central mass varies within r A± Δr . The difference in the rest energy of mass m in 
the orbiting body can be related to the difference in the distance to the central mass by 
differentiating (4.1.5:1)  
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where βA is the orbital velocity that in the case of a circular Keplerian orbit is 

2 2
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GM ω r GM
v β

r c r c
=  = =   (4.1.5:3) 

Substitution of (4.1.5:3) for βA
2 in (4.1.5:2) suggests that the rest energy in the orbiting 

body is independent of its location within rA ± Δr , i.e., 

( ) ( ) 2 2

Δ
Δ 0A A

rest B rest A

A A A

GM GM r
E E

r c r c r

 
 − = 
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 (4.1.5:4) 

Instead of a solid body, an object orbiting the central mass MA can be interpreted as a 
platform or local frame hosting a subsystem with central mass MB and “satellites” orbiting 

MB within distance rA ± Δr from the central mass MA in the parent frame. The rest energy 
of mass m rotating the local mass center MB in the local frame becomes (Figure 4.1.5-1) 
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where βB = Δr ω/c is the local orbital velocity of the satellite orbiting mass MB at radius 
Δr. As shown by equation (4.1.5:4) the first factor in parenthesis in (4.1.5:5) is independ-
ent of Δr  thus allowing the substitution of (4.1.5:1) for the first factor in  
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 (4.1.5:6) 

which suggests that the fluctuation of distance rA ± Δr to MA does not affect the rest en-
ergy observed in the satellite orbiting mass MB in the frame rotating mass MA. The veloci-
ty of light at the satellite’s location, however, is a function of the momentary distance to 
masses MB and MA  
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 (4.1.5:7) 

where distance rA + Δr  is 

Δ Δ cosA Ar r r r θ+ = +  (4.1.5:8) 

where angle θ  is the angle between Δr and rA. Substitution of (4.1.5:8) for distance rA+Δr  
in (4.1.5:7) gives 
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 (4.1.5:9) 

where gA is the gravitational acceleration at distance rA from mass MA. 

Energy object 

Gravitational frames around mass centers in space can be regarded as energy objects 
in their parent frame. Any local frame with internal interaction of potential energy and 
motion can be regarded as an energy object in its parent frame. A closed container with gas 
atoms inside is an example of an energy object. When the container is at rest in a local 
frame the rest energy of the gas molecules with average thermal velocity βG in the con-
tainer is 

( ) ( )
2

,0 0 ,0
1 Grest G rest G

E E β= −  (4.1.5:10) 

where Erest(G0),0 is the rest energy of the gas molecules at rest in the container. When the 
container is put into motion at velocity β in the local frame the rest energy of the gas 
molecules inside the container is reduced as, Figure 4.1.5-2 

( ) ( ) ( )
2 2 2

, ,0 0 ,0
1 1 1Grest G β rest G rest G

E E β E β β= − = − −  (4.1.5:11) 
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In the DU framework, there are no independent objects in space. 

Every object is linked to the rest of space. 
 

 

4.1.6 Free fall and escape in a gravitational frame  

In free fall, the buildup of momentum in space occurs against the reduction of the im-
aginary velocity of space via a turn of the imaginary axis in tilted space (see Section 4.1.1). 
Escape of mass m from the state of rest in a δ state to the state of rest in apparent homo-
geneous space releases the kinetic energy of escape into the increase of the imaginary 
momentum and rest energy  

( ) ( ) ( )0kin esc rest δ rest δ
E E E= −  (4.1.6:1) 

The kinetic energy needed by an object at a state characterized by gravitational factor δ 
in the local frame to escape to the apparent homogeneous space is equal to the kinetic 
energy of free fall from apparent homogeneous space to state δ (see equation (4.1.2:3)) 

( ) ( )0 0 0 Δδ δkin esc
E c m c c c m c= − =  (4.1.6:2) 

which illustrates that in the case of escape, kinetic energy is needed to restore the higher 
velocity of light in the apparent homogeneous space. In other words, the kinetic energy in 
escape is used in “climbing” towards apparent homogeneous space, Figure 4.1.6-1.  

Obviously, the kinetic energy, needed to climb from gravitational state δ1 to δ2 (δ1 > δ2) 
can be expressed as the difference of the kinetic energies for escape from δ1 to δ2 as 

( ) ( ) ( ) ( )0 0 1 0 0 2 0 2 11, 2 δ δ δ δ δ δkin δ δ
E c m c c c m c c c m c c= − − − = −  (4.1.6:3) 

Substituting equation (4.1.1:23) for cδ1 and cδ2 equation (4.1.6:3) obtains the form  

( ) ( ) ( )0 0 2 11, 2
1 1δkin δ δ

E c mc δ δ= − − −    (4.1.6:4) 

and further by substituting equation (4.1.1:30) for δ1 and δ2 the form 
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β
G
 

Figure 4.1.5-2. The rest energy of electrons 
and nuclei of atoms in a closed box is affected 
both by the motion of the atoms in the box, 
and the motion of the box in the local gravita-
tional frame, as well as gravitation and mo-
tions of all parent frames of the local gravita-
tional frame. 
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Figure 4.1.6-1. (a) Escape momentum in gravitational state δ in a local gravitational frame. The 
total momentum p¤

esc(δ) has the direction of the imaginary axis in apparent homogeneous space. 
Motion towards apparent homogeneous space reduces δ to zero which gradually reduces p'esc(δ) to 
zero making p¤

esc(δ) equal to the imaginary momentum in apparent homogeneous space p"0δ. (b) 
Momentum p' in gravitational state δ “stores” the extra momentum needed for escape as increased 
relativistic mass. 

( )
( ) ( ) ( ) ( )

0 01, 2

0 0 0 00 2 0 1 0 2 0 1

1 1
δkin δ δ

δ δδ δ δ δ

GM GM
E c mc GMm

c c r c c r r r

   
   = − − = − −
   
   

 (4.1.6:5) 

which is equal to the gravitational energy restored through escape. 
With reference to equation (4.1.1:3), escape momentum can be expressed as  

( )
¤ ˆ ˆˆ' "esc δ δ esc δ δesc δ

p mv mc= + = +p p i r i  (4.1.6:6) 

The escape velocity is given in terms of the tilting angle in equation (4.1.1:12) as 
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Substitution of equation (4.1.1:22) for cosψ  in equation (4.1.6:7) gives the velocity of 
free fall in the form 
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To solve for the velocity and acceleration of an object in free fall, it is useful to define 
the critical radius rc , which is the distance from the local mass center corresponding to 

gravitational factor δ = 1, when space has been tilted by 90 
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In terms of the critical radius, the gravitational factor δ can be expressed as 
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Figure 4.1.6-2. The shape of space close to a local singularity at r0δ = rc where space has tilted 90. 
At singularity, the local velocity of light cδ goes to zero.  

For r0δ = rc we have 

cos 1 0
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π
ψ δ ψ= − =  =  (4.1.6:11) 

which, as illustrated in Figure 4.1.6-2, means a local singularity (a black hole) in space.  
Substituting equation (4.1.6:10) for δ in equation (4.1.6:8) we get 
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Substitution of equation (4.1.6:12) for vesc(δ) in equation (4.1.6:6) gives the real part of 
the total momentum in the form 
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The time derivative of momentum p'esc(δ) in the direction of the local Reδ -axis can writ-
ten as 
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where vesc(0δ) is the component of vesc(δ) in the direction of radius r0δ in the direction of the 
Re0δ -axis (Figure 4.1.6-3) 
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Substituting equation (4.1.6:13) for p'esc(δ) and equation (4.1.6:15) for vesc(0δ), Figure 4.1.6-
3, equation (4.1.6:14) obtains the form 
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Figure 4.1.6-3. Velocity vesc(0δ) is the velocity component of velocity vesc(δ) in the direction of the Re0δ 
-axis. 
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Substitution of the momentum p'esc(δ) in equation (4.1.6:13) back to equation (4.1.6:16) 
gives 
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and further 
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With reference to equation (4.1.1:31), equation (4.1.6:18) can be written in terms of 
the gravitational force as the gradient of the local gravitational energy EG 
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where the direction of the gravitational force FG(r) acts in the direction of local space to-

wards mass M, i.e. ̂−r . 

Substitution of equation (4.1.6:13) for p'esc in equation (4.1.6:18) gives the acceleration 
in free fall in the direction of local space 
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or in terms of the local velocity of light c = cδ = c0δ (1–δ ), as 
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where χ is the frame conversion factor χ = c0/c defined in equation (4.1.4:13). The veloci-
ty of free fall in the direction of apparent homogeneous space is 
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4.1.7 Inertial force of motion in space 

In the preceding Section, the time derivative of momentum was derived for the case 
of free fall in a local gravitational frame. By applying the expressions of the energy of mo-
tion derived in Section 4.1.2 and the effects of nested energy frames derived in Section 
4.1.4, we can relate the time derivative of momentum to the gradient of energy in the di-
rection of motion. As a result, we get a general expression for inertial force. We find that 
the inertial force given by the theory of special relativity is an approximation of the gen-
eral expression in the case in which the effects of whole space and the nested energy 
frames are ignored. By further ignoring the extra mass needed in obtaining the motion, 
we end up with Newton’s equation of motion. 

In the DU, the energies of motion and gravitation are postulated “in hypothetical 
empty space at rest” (see Section 2.2.2); energies and forces in real space are derived 
quantities. 

With reference to equations (4.1.2:7), and (4.1.4:14) the total energy of motion can be 
written as 
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m β
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= =  =  + = =

−
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where χ is the frame conversion factor defined in equation (4.1.4:13) and the local veloci-
ty of light c is determined by the local gravitational state. For constant c, which means 
staying in a particular gravitational state and ignoring the deceleration of the expansion of 
space in the direction of the 4-radius (3.3.3:10), differentiation of equation (4.1.7:1) gives 
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p
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where χ∙c = c0 is constant (when ignoring the reduction of c0 with the expansion of space) 
and dxp is the distance differential in the direction of the complex total momentum p¤ 

shown by unit vector 
¤r̂ . Equation (4.1.7:2) can be written into the form 
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which defines the force F¤
m resulting in a change in the momentum. According to equa-

tion (4.1.7:3), force F¤
m is the time derivative of momentum times the local frame con-

version factor χ. Inertial force F¤
i resisting a change in momentum is opposite to force F¤

m. 
Substitution of the complex form of momentum in equation (4.1.3:1) for p¤ in equation 
(4.1.7:3) gives 
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 (4.1.7:4) 

The real component of the inertial force is the force observed in the direction of ac-
celeration in (4.1.7:4) (the rest mass mrest(0) is denoted as m) 
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In terms of acceleration a = cdβ/dt, equation (4.1.7:5) obtains the form 

( )
( )

( )
( )

1/22
1/22

1/22
1/22

1
' 1

1
ˆ ˆ1

m

β a

d β d
χma β

dβ dβ

d β
χma β β

dβ

−

−

−

−

 −
 = + −
 
 

 −
 = + −
 
 

β
F β

r r

 (4.1.7:6) 

where ˆ
βr and âr are the unit vectors in the directions of the velocity β and acceleration a, 

respectively. Derivation of equation (4.1.7:6) gives 
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 (4.1.7:7) 

For rectilinear motion in a local gravitational state ˆ ˆ
v ar r , the inertial force can be ex-

pressed as 
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The second term in equation (4.1.7:7) shows that, in the case of uniform circular mo-

tion when velocity is constant and acceleration is perpendicular to the velocity, ˆ ˆ
v a
⊥r r , 

the inertial force is  
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The derivation of the inertial force in equations (4.1.7:1-9) assumed a fixed gravita-
tional state with constant velocity of light. By writing the frame conversion factor χ in 
equation (4.1.7:4) into the form χ = c0/c we get 
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where the local velocity of light serves only as the reference for the local velocity in 
β = v/c. Substitution of equation (4.1.4:5) for the local rest mass m in equation (4.1.7:10) 
gives 
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Approximating c  c0 and m0  m, equation (4.1.7:11) obtains the form of the law of 
motion in the special theory of relativity  
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and by further ignoring the excess of mass needed in the buildup of local motion equa-
tion (4.1.7:11) obtains the form of Newton’s law of motion 

( )Newton

d d
m m

dt dt
= = =

p v
F a  (4.1.7:13) 

which can both be interpreted as local approximations of equation (4.1.7:11). 

4.1.8 Inertial force in the imaginary direction 

A special feature of the DU-model is the motion of space in the imaginary direction, 
which is the motion resulting in the rest energy of matter in space. The balance between 
motion and gravitation in the imaginary direction is affected by motion in space through 
the reduction of the rest mass. It can be shown that a similar reduction in the interaction 
in the imaginary direction can be derived by interpreting motion in space as central mo-
tion relative to the mass equivalence of spherical space. The latter approach shows the 
propagation at the velocity of light in space as propagation in a “satellite orbit” in spheri-
cal space, where the central acceleration of motion cancels the gravitational effect of the 
central mass. 
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The inertial force of motion in space was determined from the time derivative of total 
momentum assuming velocity c in the imaginary direction to be constant. The price to be 
paid for the buildup of the real component of the internal momentum p’I = mv contrib-
uting to the momentum in space is a reduction in the rest momentum via a reduction of 
the rest mass mrest(β). Reduction of the rest mass and the imaginary momentum of an ob-
ject in motion appear as a reduction in the inertial force in the imaginary direction as 

( )
2" "

" 1
i n

d d
χ χm β

dt dt
= − = − −

p c
F  (4.1.8:1) 

where β is the velocity of the object in the local frame. 
The reduction of the rest mass can be deduced also by studying the motion of an ob-

ject in a local frame as central motion relative to the mass equivalence of space in the im-
aginary direction. An object moving at velocity β at gravitational state δ has relativistic 

mass 
21β effm m m β= = − . The imaginary gravitational force on the object due to the 

mass equivalence M” is 
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where R" is the local imaginary radius of space (the distance to the mass equivalence of 
space). The ratio GM”/R” = c0c in a local gravitational state can be solved from the zero-
energy balance of the local rest energy and the global gravitational energy in (4.1.4:8) and 
(4.1.4:11). By further applying the frame conversion factor χ equation (4.1.8:2) can be ex-
pressed in form 

( )
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χm c
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Central acceleration due to motion in space is generated in the imaginary direction due 
to the turn of the c” vector (Figure 4.1.8-1) 

( )

2" ˆ"
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v

d v

dt R
= − = −

c
a i  (4.1.8:4) 

The inertial force generated by mass mβ due to the acceleration a"(v) in the direction of 
the Imδ -axis can be expressed as 

m 

Imδ 

c"(t) 

M” 

c"(t+t) 

v Figure 4.1.8-1. Velocity v in space results in the ac-
celeration a”(v) = v 2/R” in the direction of the local 
imaginary axis, Imδ. If the gravitational state is con-
served, also c” and the distance R”δ to the mass 
equivalence M” are conserved. 
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Figure 4.1.8-2. Motion in space reduces the 
gravitational force of mass equivalence M” by 
the amount of the central force FC created by 
the motion. 
The apparent imaginary radius R” is perpen-
dicular to the space directions everywhere in 
space. In hypothetical homogeneous space R” 
= R4. 

 

 
Figure 4.1.8-3. Propagation at the velocity of 
light “in satellite orbit” in spherical space. The 
velocity of light decreases with the increase in 
R”. 
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The force F"i is in the opposite direction to the imaginary gravitational force given in 
equation (4.1.8:3). With equations (4.1.8:3) and (4.1.8:5) combined, the total imaginary 
force on mass mβ moving at velocity v in space can now be expressed as 
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As shown by equation (4.1.8:6), the effect of the imaginary acceleration due to motion 
in space is to reduce the total imaginary force of gravitation of the object by a factor (1–
β 2) which reduces (4.1.8:6) into form 

( )

( ) ( )

2 2 2

0

,

0

1 1ˆ ˆ"
" "

" "

δ δδ g a

rest β rest β

χmc β c mc β

R R

c m c E

R R

− −
= − = −

= − = −

F i i

 (4.1.8:7) 

The imaginary gravitational force on mass mrest(β) at rest is 
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where the last form describes the gravitational force as the gradient of global gravitational 
energy of mass mrest(β), Figure 4.1.8-2. 

If an object is moving at the local velocity of light in space (β  1), the effective imag-
inary gravitational force goes to zero as is obvious from equation (4.1.8:8). In such a case, 
the object moves similarly to a satellite in expanding spherical space, Figure 4.1.8-3. The 
rest energy and rest momentum of an energy object moving at the velocity of light in 
space is zero. 

4.1.9 Topography of space in a local gravitational frame 

The curvature of space near local mass centers is a consequence of the conservation 
of the energy balance created in the primary energy buildup of space. Because the fourth 
dimension is a geometrical dimension, the shape of space can be solved in distance units 
also including the topography of the fourth dimension. 

As a local mass center in space is approached, the growing contribution of the local 
gravitational effect causes an increase in the tilting angle of space, ψ. The slope of the 
curvature of space can be expressed as 

0

0

"
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δ

dR
ψ

dr
=  (4.1.9:1) 

where ψ is the tilting angle of space at distance r0δ from the local mass center, Figure 
4.1.9-1. 

The total curvature of space due to tilting close to a local gravitational center can be 
calculated as the integrated effect of dR”0δ 
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When δ ≪ 1, dR”0δ can be approximated as 
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which gives the local curvature as a function of the distance from the gravitational center 
M as 
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where rc = GM/c0c0δ is the critical radius as defined in equation (4.1.6:9). 
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Figure 4.1.9-1. Coordinate system for calculating the topography of space. 

Equation (4.1.9:4) applies for r0δ ≫ rc , which is the case for “ordinary” mass centers in 

space. For example, the critical radius for the mass of the Earth, Me  6 1024 kg, is 

rc(Earth)  4.5 mm. Figure 4.1.9-2 illustrates the actual dimensions of the local curvature of 
space in our planetary system. The calculation is based on equation (4.1.9:4). As can be 
seen, the Sun dips about 26,000 km further into the fourth dimension than does the 
Earth, which is about 150,000 km “deeper” than the planet Pluto.  

Close to a local singularity in space, where r0δ  rc , we can denote 

0 0Δδ c δr r r= +  (4.1.9:5) 

Applying equations (4.1.9:5) and (4.1.6:10) allows us to express the gravitational factor 
δ as 

0 0Δ

c c

δ c δ

r r
δ

r r r
= =

+
 (4.1.9:6) 

 

Figure 4.1.9-2. The topography of the Solar System in the fourth dimension. Observe the different 
scales in the vertical and horizontal axes. 
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and equation (4.1.9:2) as 
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When Δr0δ ≪ rc , equation (4.1.9:7) can be approximated as 
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which can be integrated in closed form as 
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Inspection of equation (4.1.9:9) shows that the flat space radius, r0δ, never reaches the 
critical radius rc and space has a tube-like form in the fourth dimension, Figure 4.1.9-3. 
The formation of infinite “worm holes” must be considered merely a hypothetical possi-
bility (see Section 4.2.8 for orbital velocity near a local singularity). 

4.1.10 Local velocity of light 

The local velocity of light is a function of the distance from mass centers in space. At 
the surface of the Earth, the velocity of light is reduced by about 20 cm/s compared to 
the velocity of light at the distance of the Moon from the Earth. The velocity of light at 
the Earth’s distance from the Sun is about 3 m/s lower that the velocity of light far from 
the Sun. 

The local velocity of light is determined by the gravitational state, as expressed in 
equation (4.1.4:10). The velocity of light is known best on the Earth, in the local gravita-
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Figure 4.1.9-3. The geometry of a singulari-
ty in space in the fourth dimension. The 
curve is based on numerical integration of 

equation (4.1.9:2). At r0δ  rc,, R”0δ can be 
approximated by equation (4.1.9:9) and at 
r0δ >> rc by equation (4.1.9:4). The vertical 

scale corresponds to r0δ(min) = 10 –6
 rc . 

Here a perfect symmetry in the buildup of 
the singularity is assumed. 
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tional frame of the Earth. The farther away we go the less accurate is our knowledge of 
the gravitational frames we are bound to. 

The apparent homogeneous space around the Earth is the space at Earth distance 
from the Sun as it would be with the effect of the gravitation of the Earth removed. The 
velocity of light in the apparent homogeneous space of the Earth is affected by the gravi-
tation of the Sun, the Milky Way, and the galaxy group the Milky Way belongs to. 

If we initially consider only the effect of the gravitation of the Earth itself, the local 
velocity of light at distance r0δ from the center of the Earth can be expressed in accord-
ance with equations (4.1.1:23) and (4.1.1:30) as 
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1 1 e
δ e δ

δ δ
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c c δ c

r c c

 
= − = − 
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where Me is the mass of the Earth, r0δ is the flat space distance from the center of the 
Earth, and c0δ is the velocity of light in apparent homogeneous space. The effect of the 
gravitation of the Earth on the velocity of light can be calculated by subtracting c0δ from c 
given in equation (4.1.10:1). Thus 
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r δ δ δ δ
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Figure 4.1.10-1 illustrates the effect the Earth and the Moon on the velocity of light in 
the solar gravitational frame. The “tilting” of the velocity of light in apparent homogene-
ous space around the Earth in Figure 4.1.10-1 is due to the gravitation of the Sun.  

The gravitation of the Sun reduces the velocity of light in apparent homogeneous 
space around the Earth, c0δ(Earth), by about 2.96 [m/s] relative to the velocity of light in ap-
parent homogeneous space around the Sun in the Milky Way. Distance to the Sun from a 
fixed location on the rotating Earth is a function of the time of the day and the latitude.  

 
Figure 4.1.10-1. Effect of the gravitation of the Sun, Earth, and Moon on the velocity of light. The 
tilted baseline at the top shows the effect of the Sun on the velocity of light, which is the apparent 
homogeneous space velocity of light for the Earth, c0δ(Earth). The Moon is shown in its “Full Moon” 
position, opposite to the Sun. The curves in the figure are based on equation (4.1.10:2) as separate-
ly applied to the Earth and the Sun. The effect of the mass of the Milky Way on the velocity of 

light in our planetary system is about Δc  –300 m/s. 
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There is also an annual variation due to the eccentricity of the orbit of the Earth and 
the inclination angle of the Earth rotation axis. Generally, a difference in the distance to 
the barycenter of the gravitational frame studied results in a difference in the velocity of 
light 
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or 
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dc g

c
  (4.1.10:4) 

where g is the gravitational acceleration at distance r from the barycenter. 

The orbital radius of the Earth in the solar frame is about 1.510 11 ± 2.5109 m with a 

daily perturbation of about ±6.4106 m at the equator. The average gravitational factor is 

δ  9.8510–9. 
The annual fluctuation in the velocity of light due to the eccentricity of the Earth orbit 

is  
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The daily perturbation of the velocity of light at the equator is 

6
9 13

11

6.4 10
9.85 10 4.2 10

1.5 10

dc dr
δ

c r

− −
       


 (4.1.10:6) 

The effects of the variation of the velocity of light on the ticking frequency and the 
synchronization of atomic clocks on the Earth and in Earth satellites are discussed in Sec-
tion 5.7.3. 
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4.2 Celestial mechanics 

Because of the dents around mass centers, the geometry of DU-space has features in 
common with the Schwarzschild metric based on four-dimensional spacetime. The pre-
cise geometry of space makes it possible to solve for the effect of the 4-D geometry on 
Kepler’s laws and the orbital equation in closed mathematical form. A perihelion shift, 
equal to that predicted by the general theory of relativity, can be derived as the rotation of 
the orbit relative to a non-rotating reference coordinate system. In addition to the perihe-
lion shift, the length of the radius of the orbit is subject to a perturbation with a maxi-
mum at the aphelion. The DU model does not predict gravitational radiation; gravitation-
al energy is potential energy by its nature. All mass in space contributes to the local gravi-
tational potential. Orbits of local gravitational systems are subject to expansion with the 
expansion of whole spherical space.  

In DU-space, orbits around mass centers are stable down to the critical radius which 
is half of the critical radius in Schwarzschild space. This means a major difference to or-
bits around local singularities in Schwarzschild space, where orbits become unstable at 

radii below 3 rc(Schwd) . Slow orbits below the radius of the minimum period maintain the 
mass of the local singularity. 

4.2.1 The cylinder coordinate system 

In all observations in a local gravitational frame, the reference space moves in the lo-
cal fourth dimension, the Im0δ-direction, at the same velocity as the objects studied. For 
the study of orbital equations, it is therefore convenient to choose a cylinder coordinate 
system with the base plane parallel to the apparent homogeneous space of the gravita-
tional frame studied. The z-coordinate shows the distance in the direction of the Im0δ-axis 
drawn through the center of the central mass of the frame, Figure 4.2.1-1. 

With reference to equation (4.1.9:2), the distance differential dz0δ can be expressed as 
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δ
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− −
= = − = − = −

−
 (4.2.1:1) 

where ψ is the tilting angle of local space. 
The cylinder coordinate system allows the orbital equations to be solved by first study-

ing the flat space projection of the orbits in planar polar coordinates on the base plane 
parallel to apparent homogeneous space. The real space orbit can then be constructed by 
adding the z0δ-coordinate given in equation (4.2.1:1).  

4.2.2 The equation of motion  

Equation (4.1.6:20) gives the gravitational acceleration in the direction of the local Reδ 

-axis. In order to utilize the cylinder coordinate system defined in Section 4.2.2, we apply 
the “flat space” component of the gravitational acceleration to first solve the equation of 
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motion as a plane solution in the direction of apparent homogeneous space. Based on 
equation (4.1.6:20), the component of the acceleration of free fall in the direction of dis-
tance r0δ along the Re0δ-axis is 
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On the flat space plane, the centripetal acceleration in central motion on a plane in the 
direction of apparent homogeneous space can expressed as  
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⊥
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v
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where velocity ( ) ( )0δ δ⊥ ⊥
=v v is the velocity component perpendicular to radius r0δ (and 

also to radius rδ) in the local gravitational frame, Figure 4.2.2-1.  
Combining equations (4.2.2:1) and (4.2.2:2) gives the balance of the gravitational and 

kinematic accelerations on the flat space plane  
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Figure 4.2.1-1. Apparent homogeneous space and tilted (actual) local space. The local complex 
coordinate system, Imδ –Reδ, at object m is illustrated. The imaginary velocity of apparent homo-
geneous space, appearing in the direction of the Im0δ -axis, is c0δ, and the imaginary velocity of 

local space, the component of c0δ in the direction of the Imδ -axis, is cδ = c0δ cosψ. 
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Figure 4.2.2-1. Acceleration aff(0δ) is the flat space component of acceleration aff. Acceleration aff(0δ) 
has the direction of r0δ. 

Equation (4.2.2:3) has the form of the classical equation of motion in a gravitational 
frame, but is corrected by the factor (1–δ )3 originating from the effect of the local curva-
ture of space on the gravitational acceleration. By applying the system mass M = M+m 
for mass combined with the frame conversion factor  
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and equation (4.1.6:10) for δ, equation (4.2.2:3) can be expressed in form 
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Equation (4.2.2:5) can be solved following the procedure used in deriving the Kepler’s 
equations. 

4.2.3 Perihelion direction on the flat space plane 

Equation (4.2.2:5) differs by factor (1–rc /r0δ)3 from the classical equation of motion 
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used in deriving Kepler’s orbital equation. In order to find out the effect of the factor (1–
rc/r0δ)3, we follow the procedure used in deriving Kepler’s orbital equation. 

The angular momentum per unit mass (related to the orbital velocity in the direction 
of the flat space plane) can be expressed as 
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0 0 0δ δ δ= k r r  (4.2.3:2) 

The time derivative of k0δ is 

0 0 0 0 0 0 0δ δ δ δ δ δ δ=  +  = k r r r r r r  (4.2.3:3) 

Substituting (4.2.2:5) for 0r   in (4.2.3:3) we get 
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To determine vector eδ we form the vector product 0 0δ δk r  
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 (4.2.3:5) 

Since the time derivative of distance 
0δ

r is the component of 0δr  in the direction of r0δ, 

it is possible to express 
0δr  in the form of a dot product 
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and, accordingly, equation (4.2.3:6) can be expressed as 

0 0 0 0δ δ δ δr r =r r  (4.2.3:7) 

Equation (4.2.3:5) can now be expressed as 
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where the expression in parenthesis can be identified as the time derivative 
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and equation (4.2.3:8) can be expressed as 
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As shown in (4.2.3:4), the time derivative of k0δ is zero. Accordingly, the vector prod-

uct 0 0δ δk r  can be expressed in the form 
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k r
k r  (4.2.3:12) 

Combining equations (4.2.3:10) and (4.2.3:12) gives 

( ) ( ) ( )0 0 0 00 0 δ δ δ δδ δ

r

d μ r d rd
μA

dt dt dt


+ =

r rk r
 (4.2.3:13) 

which can be written in the form 

( ) ( )0 0 0 0 0 0δ δ δ δ δ δ

r

d μ r d r
μA

dt dt

 +
=

k r r r
 (4.2.3:14) 

The expression in parenthesis on the left hand side of the equation is equal to the ec-

centricity vector –e0δ μ showing the direction of the perihelion or periastron radius in 
Kepler’s orbital equation. Applying e0δ in equation (4.2.3:14), we get the time derivative  

( )0 00 δ δδ
r

d rd
A

dt dt
= −

re
 (4.2.3:15) 

which in Newtonian mechanics is equal to zero. Equation (4.2.3:15) implies that the ec-
centricity vector e0δ changes with time. Solving (4.2.3:15) gives 

( )0 000 0 0 0

2 2

0 0 0 0

δ δδδ δ δ δ
r r

δ δ δ δ

dr dtd dtd r
A A

dt r r r r

  
= − − = − −  

   

rre r r
 (4.2.3:16) 

In polar coordinates on the flat space plane, vector dr0δ can be expressed as 

0 0 0
ˆ ˆ

δ δ δd r dφ dr⊥= +r r r  (4.2.3:17) 

where ˆ
⊥r  and r̂  are the unit vectors perpendicular to r0δ and in the direction of r0δ, respec-

tively. 
Substituting (4.2.3:17) into (4.2.3:16) gives 

( ) ( )0 0 0 00

2

0 0

ˆ ˆ ˆδ δ δ δδ
r

δ δ

r dφ dr dt dr dt rd
A

dt r r

⊥
 +

= − − 
  

r r re
 (4.2.3:18) 

and further 

0 0 0

0 0

ˆ ˆ ˆδ δ δ
r r

δ δ

d dr drdφ dφ
A A

dt dt r dt r dt dt
⊥ ⊥

  
= − + − = −  

   

e
r r r   (4.2.3:19) 

As shown by (4.2.3:19), the change in e0δ occurs as rotational change only, which 
means that the orbit conserves its eccentricity but is subject to a rotation of the main axis. 
Multiplying (4.2.3:19) by dt gives 

0
ˆ

δ rd A dφ ⊥= −e r  (4.2.3:20) 

The differential rotation dψ0δ of the polar coordinate system that eliminates the differ-
ential change of the eccentricity vector de0δ can be solved from equation 
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0 0
ˆ 0δ r δd A dφ dψ⊥= − + =e r  (4.2.3:21) 

as 

0
ˆ

δ rdψ A dφ ⊥= r  (4.2.3:22) 

which by substitution of equation (4.2.3:11) for Ar gives 

3

0

0 0

3
1 1 c c

δ r

δ δ

r r
dψ A dφ dφ

r r

  
 = = − −  
   

 (4.2.3:23) 

In a coordinate system that rotates by angle dψ0δ in the direction of the orbital motion, 
the time derivative of e0δ is zero, which is the requirement of Kepler’s orbital equation. 

Applying Kepler’s equation  

( )2

0

1

1 cos
δ

a e
r

e φ

−
=

+
 (4.2.3:24) 

for r0δ in (4.2.3:23), we can express the rotation dψ0δ as 

( )

( )
0 2

3 1 cos

1

c

δ

r e φ
dψ dφ

a e

+


−
 (4.2.3:25) 

Rotation Δψ0δ can be obtained by integrating (4.2.3:25) 

( )
( )

( )

( )
0 2 2

0

3 sin3
Δ 1 cos

1 1

φ

cc
δ

r φ e φr
ψ e φ dφ

a e a e

+
 + =

− −
  (4.2.3:26) 

According to equation (4.2.3:26), the coordinate system conserving Kepler’s orbital 
equations rotates by angle Δψ0δ (φ) in the direction of the orbital motion. To express the 
orbital equation in the non-rotating polar coordinate system, we have to subtract angle 
Δψ0δ (φ) from the φ-coordinate as 

( )
( )

2

0

0

1

1 cos Δ
δ

δ

a e
r

e φ ψ

−
=

+ −
 (4.2.3:27) 

which is Kepler’s equation supplemented with a perihelion advance of angle Δψ0δ(φ). Set-
ting φ = 2π in equation (4.2.3:26), the perihelion advance for a full revolution can be ex-
pressed as 

( )
( )

0 2

6
Δ 2

1

c
δ

πr
ψ π

a e
=

−
 (4.2.3:28) 

By applying equations (4.1.6:9) and (4.2.2:4) in (4.2.3:28), the perihelion advance for a 
full revolution can be expressed as 

( )
( )

( )
0 2 2

6
Δ 2

1
δ

πG M m
ψ π

c a e

+
=

−
 (4.2.3:29) 



148 The Dynamic Universe 

 

 
which is the same result as given by the general theory of relativity for perihelion advance, 
Figure 4.2.3-1. 

4.2.4 Kepler’s energy integral 

To complete our analysis of the orbit on the flat space plane we now study the energy 
integral derived from the dot product of the velocity and the acceleration given in equa-
tion (4.2.2:5) 

( ) ( )
3 3

0 0

0 0 0 0 03 2

0 0

1 1c δ c δ

δ δ δ δ δ

δ δ

μ r r μ r r
r

r r

− − −
 =  = −r r r r  (4.2.4:1) 

which, by substituting equation (4.2.3:11) for (1–rc/r0δ)3, can be expressed as 

( )
0 0 0 0 02 2 2

0 0 0

1 r r
δ δ δ δ δ

δ δ δ

μ A μAμ
r r r

r r r

−
 = − = − +r r  (4.2.4:2) 

The first term on the right-hand side in equation (4.2.4:2) can be written as 

( )00
02 2

0 0

δδ
δ

δ δ

d μ rdrμ μ
r

r r dt dt
− = − =  (4.2.4:3) 

and by substituting equation (4.2.4:3) into equation (4.2.4:2) we can write 

( )0

0 0 02

0

δ r
δ δ δ

δ

d μ r μA
r

dt r
 = +r r  (4.2.4:4) 

The dot product of the velocity and the acceleration can also be expressed as 

( ) ( ) ( )22

(0 )00 0

0 0

221 2 r δδδ δ

δ δ

d vd rd

dt dt dt


 = = =

r r
r r  (4.2.4:5) 

where 0 (0 )δ r δ=r v  is the radial velocity on the flat space plane. Combining equations 

(4.2.4:4) and (4.2.4:5) gives 

Δψ0 

M 

r0δ φ 

Figure 4.2.3-1. Perihelion advance results in the rotation of the main axis. For each full revolu-

tion, the rotation is 6 rc/a(1–e2). 
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( )2

(0 ) 0

02

0

2r δ δ r
δ

δ

d v μ r μAdh
h r

dt dt r

−
= = =  (4.2.4:6) 

where h, in Kepler’s formalism, 

2

(0 )

02

r δ

δ

v μ
h

r
= −  (4.2.4:7) 

is referred to as the energy integral.  
In the case of Newtonian mechanics, the time derivative of the energy integral is zero. 

In the DU, as shown by equation (4.2.4:6), the time derivative of h is not zero. 
In Kepler’s orbital equation 

( )

( )
( )

22

0

1

1 cos 1 cos
δ

a ek
r

μ e φ e φ

−
= =

+ +
 (4.2.4:8) 

the constants μ, e, h, and k are related as 

( ) ( )2 2 2 2

2

2

1 1
;

2 2

μ e μ e
k h

h k

− − − −
= =  (4.2.4:9) 

In order to determine the effect of the time dependent h on the orbital equation, we 
solve for the time derivative of k0δ

 2 (for stable mass centers μ is constant): 

( ) ( )2 2 2 2 2

0

2

1 11 1

2 2

δ
μ e μ e k

k h h h
h h h h

− − − 
= − = = − 

 
 (4.2.4:10) 

Substituting equation (4.2.4:6) for h  into equation (4.2.4:10) gives 

2

0
02

0

δ r
δ

δ

k μA
k r

h r
= −  (4.2.4:11) 

and substituting equation (4.2.4:9) for h into equation (4.2.4:11) gives 

( )

4

0
022

0

2

1

δ r
δ

δ

k A
k r

rμ e
= −

− −
 (4.2.4:12) 

The time derivative 0δr  in (4.2.4:12) can be solved from (4.2.4:8) 

( )

2

0 2
sin

1 cos
δ

k
r e φ φ

μ e φ
=

+
 (4.2.4:13) 

Substitution of equation (4.2.4:13) for 0δr  in equation (4.2.4:12) and multiplication of 

the equation by dt gives 

( )( )

6
2 0

2 22 2
0

2
sin

1 1 cos

δ r

δ

k A
dk e φ dφ

rμ e e φ
=

− +
 (4.2.4:14) 

From equation (4.2.4:8) we get 
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( )
2

0

1

1 cos
δdr dk

μ e φ
=

+
 (4.2.4:15) 

Substituting (4.2.4:14) for dk2 in (4.2.4:15) gives 

( )( )

6

0
0 3 23 2

0

2
sin

1 1 cos

δ r
δ

δ

k A
dr e φ dφ

rμ e e φ
=

− +
  (4.2.4:16) 

which can be developed further as 

( ) ( )

3

0 0
0 22 2

0

2 2
sin sin

1 1

δ r r δ
δ

δ

r A eA r
dr e φ dφ φ dφ

re e
= =

− −
 (4.2.4:17) 

Applying the first order approximation for Ar  3rc/r0δ, equation (4.2.4:17) can be ex-
pressed as 

( )
0 2

6
sin

1

c
δ

er
dr φ dφ

e
=

−
 (4.2.4:18) 

and the total perturbation of distance r0δ as (Figure 4.2.4-1) 

( )
( )

( )

( )
0 2 2

0

6 1 cos6
Δ sin

1 1

φ

cc
δ

er φer
r φ φ dφ

e e

−
= =

− −
  (4.2.4:19) 

The increase of r0δ, Δr0δ, is zero at perihelion and achieves its maximum value at aphe-
lion: 

perihelion: ( )0Δ 0 0δr =  (4.2.4:20) 

aphelion: ( )
( )

0 2

12
Δ

1
δ c

e
r π r

e
=

−
 (4.2.4:21) 

 
Figure 4.2.4-1. Kepler’s orbit is perturbed by distance Δr0δ=6rc e (1–cosφ)/(1–e2 ), equation (4.2.4-1). 

Δφ 

M 

 r0δ+r0δ 
φ 
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Combining equations (4.2.3:27) and (4.2.4:19) gives the complete orbital equation of 

the flat space projection of the orbit 
 

( )
( )

( )

( )

2

0 0

0 2
0

1 6 1 cos Δ

1 cos Δ 1

δ c δ

δ

δ

a e er φ ψ
r

e φ ψ e

− − −  
= +

+ − −
 (4.2.4:22) 

Equation (4.2.4:22) is applicable in gravitational potentials δ ≪ 1 where the approxi-

mation (1–δ )3  (1–3δ) is accurate enough. Figure 4.2.4-2 illustrates the development of 
the orbit according to equation (4.2.4:22). 

4.2.5 The fourth dimension 

The orbital coordinates are completed by adding the z-coordinate, which extends the 
orbital calculation made on the flat space plane to actual space curved in the fourth di-
mension.  

With reference to equation (4.1.9:4), the z-coordinate, the distance from the central 

plane (in the flat space direction) intersecting the orbiting surface at φ = π/2, can be ex-
pressed as 

( ) ( )2

0 0 0 02 2 1δ c δ δ δz r r r a e = − −
  

 (4.2.5:1) 

where r0δ is the flat space distance from the center of the gravitational frame given in 
equation (4.2.4:22). The expression a0δ(1–e0δ

2) in equation (4.2.5:1) is the value of r0δ at 

φ0δ = π/2, which is used as the reference value for the z-coordinate. Equations (4.2.4:22) 
and (4.2.5:1) give the 4-dimensional coordinates of an orbiting object as a function of an-
gle φ0δ determined relative to the perihelion direction in the flat space projection of the 
orbit, Figure 4.2.5-1.  

Figure 4.2.4-2. For δ = 410 –3 and e = 0.6, 
the rotation of the perihelion proceeds 

about 270 in 40 revolutions. The DU 
orbit conserves its shape but is slightly 
larger than Kepler’s orbit, shown as the 
ellipse drawn with stronger line, with an 
arrow showing the orbiting direction. At 
perihelion, the distance from the orbit to 
the mass center is the same in the DU and 
Kepler’s orbits.  
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Figure 4.2.5-1. Projections of an elliptic orbit on the x0δ –y0δ and x0δ –z0δ planes in a gravitational 
frame around mass center M. 

The differential of a line element in the z0δ-direction can be expressed in terms of the 
differential in the r0δ-direction on the flat space plane and the tilting angle  

f0 0 0 0" tanδ δ δ δdz dR dr B dr= = =  (4.2.5:2) 

where [see equation (4.1.9:2)] 

( )

( )

( )

( )
f

22

0

0

1 11 1
tan

1 1

c δ

c δ

r rδ
B

δ r r

− −− −
= = =

− −
 (4.2.5:3) 

The distance differential dr0δ in equation (4.2.5:2) can be obtained from the derivative 
of equation (4.2.4:22) as 

0 0δ δdr A dφ=  (4.2.5:4)  

where 

( )
( ) ( )

( )
2

2 2

1 6
sin Δ

11 cos Δ

c
a e r

A e φ ψ
ee φ ψ

 − 
= + − 

−+ −    

 (4.2.5:5) 

φ 

orbital surface 

• M 

M 

y0δ 

m 

z0δ (Im0δ) 

x0δ 

x0δ 

r(2)0δ 

r(1)0δ 



Energy structures in space  153 

 

 
Figure 4.2.5-2. The z0δ  – x0δ  profile of the orbit of Mercury. Note the different scales in the z0δ- 
and x0δ -directions. 

The line element of the orbit can be expressed in cylindrical coordinates as 

0
ˆ ˆ ˆ

r δ zd dr r dφ dz= + +s u u u  (4.2.5:6) 

where û  is the unit vector in each coordinate direction. 
The squared line element ds2 of an orbit around a mass center can now be expressed 

as 

2 2 2 2 2 2

0δds r A A B dφ = + +   (4.2.5:7) 

where r0δ is the flat space radius given in equation (4.2.4:22). The scalar value of the line 
element can now be expressed as 

( )2 2 2

0 1δds r A B dφ= + +  (4.2.5:8) 

The length of the path along the orbit from φ1 to φ2 can be obtained by integrating 
(4.2.5:8) as 

( )
2

2 2 2

0
1

1
φ

δ
φ

s r A B dφ= + +  (4.2.5:9) 

Figure 4.2.5-2 shows the x0δ  –z0δ profile of the orbit of Mercury in the solar gravita-
tional frame. 

4.2.6 Effect of the expansion of space 

The orbital elements a, e, k, and μ are related as 

( )
2

21
k

a e
μ

− =  (4.2.6:1) 
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The parameter k is the angular momentum per unit mass, which at the perihelion 
point can be expressed as 

( )1 pk a e v= −  (4.2.6:2) 

where vp is the orbital velocity at the perihelion. By applying equations (4.1.1:8), (4.2.2:4), 
(4.2.6:1), and (4.2.6:2), the semi-major axis, a, can be expressed as 

( )

( )

( )

( )

( )

( ) ( )

2

0

2 2 2

0

1 1 11

1 1 1

δ c c
c

p p p δ

μ e e ec r r
a r

e v e v e β

+ + +
= = =

− − −
 (4.2.6:3) 

where  

( ) 20 0
0 0 0

0 0

δ δ
δ c δ c

c c
μ G M m c c r c r

c c
= + = =  (4.2.6:4) 

With reference to equations (4.1.6:10) and (4.2.2:4), the critical radius rc can be ex-
pressed as 

( )
0 0

0 0

"
"

c δ δ

δ

G M m M m
r δr R

c c M

+ +
= = =  (4.2.6:5) 

Substitution of equation (4.2.6:5) for rc in equation (4.2.6:3) relates the semimajor axis 
to the imaginary radius of space 

( )

02

0

1 1
"

1 "
δ

p δ

e M m
a R

β e M

+ +
=

−
 (4.2.6:6) 

The conservation of energy in the cosmological expansion of space requires that βp be 
conserved. Equations (4.2.6:5) and (4.2.6:6) confirm that rc and the semi-major axis, a, 
increase in direct proportion to the imaginary radius R”0δ.  

 

Gravitationally bound local systems expand in direct proportion to the 
expansion of space. 

4.2.7 Effect of the gravitational state in the parent frame  

As shown by equation (4.2.6:6), the semi-major axis, a, increases in direct proportion 
to the imaginary radius R”0δ, which is the imaginary radius of the apparent homogeneous 
space of the local rotational system. When the local rotational system rotates in an ellipti-
cal orbit in its parent frame the gravitational state of the local system and, thereby, the 
imaginary radius R”0δ, oscillates with the rotation in the parent frame. Solving for the ra-
dius of a local orbiting system from equation (4.1.1:8) gives 

0
0

" "
;

" "

δ δ
δ δ

R RM M
r r

M δ M δ
= =  (4.2.7:1) 
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which shows that conservation of the local gravitational factor, δ, makes r0δ directly pro-
portional to R”0δ, just as was concluded from equation (4.2.6:6).  

The imaginary radius of the apparent homogeneous space of the local frame, R”0δ, is 
the local imaginary radius in the parent frame, which, according to equation (4.1.1:25), 
can be related to the imaginary radius of the apparent homogeneous space of the parent 
frame as  

0 0
0

0

" "
" " ; 1

1 "

δP δP
δ δP P

P δ

R R
R R δ

δ R
= = = −

−
 (4.2.7:2) 

where δP is the gravitational factor of the orbiting system in the parent frame. When the 
imaginary radius of the apparent homogeneous space of the parent frame, R”0δP, is con-
stant, differentiation of equation (4.2.7:2) gives 

( ) 0

0

"
1

"

δ
P P

δ

dR
dδ δ

R
= −  (4.2.7:3) 

With reference to equation (4.1.1:8), δP and its differential can be expressed as  

0 0

0 0

"

"

P δP δP
P P P

δP δP

M R dr
δ dδ δ

M r r
=  = −  (4.2.7:4) 

Combining equations (4.2.7:3) and (4.2.7:4) gives 

0 0 0

0 0 0

"

" 1

δ δP δPP
P

δ P δP δP

dR dr drδ
δ

R δ r r

−
=  −

−
 (4.2.7:5) 

which relates the change in the imaginary radius of the local frame to the change in the 
distance of the local frame from the central mass of the parent frame. 

Assuming the gravitational factor in the local frame to be constant, differentiation of 
equation (4.2.7:1) gives 

0 0

0 0

"

"

δ δ

δ δ

dr dR

r R
=  (4.2.7:6) 

which by substitution of equation (4.2.7:5) gives 

0 0 0

2 2

0 0 0 0

Δδ δP δPP P
P P

δ δP δP δP

dr dr drGM g
δ r

r r c r r c
 − = −  −  (4.2.7:7) 

where gP is the gravitational acceleration of the central mass of the parent frame at the 
local orbiting system.  

The last form of equation (4.2.7:7) applies for small relative changes in r0δ, corre-
sponding to the case where the eccentricity of the orbit of the local rotational system in 
the parent frame is small. For example, the eccentricity of the orbit of the Earth is 
e = 0.0167, which means that the annual change in the Earth to Moon distance can be 
calculated from the last form of equation (4.2.7:7). 

The general import of equation (4.2.7:7) is that the orbital radius of a local system in-
creases when the distance to the central mass of the parent frame decreases, Figure 4.2.7-
1.  
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Figure 4.2.7-1. The orbital radius of a local rotational system increases when the local system 
comes closer to the central mass of its parent frame. The relative increase of the orbital radius r0δ is 
directly proportional to the relative increase of the imaginary radius R”0δ of the apparent homoge-
neous space of the local frame [see equation (4.2.7:6)]. 

4.2.8 Local singularity in space 

The velocity in a circular orbit around a mass center can be solved from the accelera-
tion of the motion on the flat space plane and the acceleration due to the mass center 
given in equation (4.2.2:5)  

( ) ( )
3 322

0

0 0 02

0 0 0 0

1 1
ˆ ˆ ˆδorb

δ δ δ

δ δ δ δ

GM δ c δ δv

r χ r r

− −
= =r r r  (4.2.8:1) 

which gives 

( ) ( ) ( )
2

32 2

0 02

0

1orb

orb δ orb δ

δ

v
β β δ δ

c
= = = −  (4.2.8:2) 

and 

( ) ( ) ( ) ( )
3

0
1 1 1orb δ

β δ δ δ δ δ= − = − −  (4.2.8:3) 

or in terms of the local velocity of light cδ = c0δ (1–δ ) 

( ) ( )1orb

orb δ

δ

v
β δ δ

c
= = −  (4.2.8:4) 

When related to the local velocity of light, the orbital velocity achieves its maximum 

vorb = 0.5 cδ  at r0δ = 2rc and goes to zero when r0δ  rc (δ  1). 
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As demonstrated by equation (4.2.8:4) and Figure 4.2.8-1, the local orbital velocity in a 

circular orbit near a local singularity is stable, and approaches zero at the critical radius 
where also the local velocity of light approaches zero. This suggests that at orbits with 

r0δ < 2rc , a local singularity maintains the mass characteristic to the singularity. 
The orbital period for circular orbits can be solved from (4.2.8:3) as 
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Derivation of (4.2.8:5) gives 
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 (4.2.8:6) 

which goes to zero at r = 2rc corresponding to the minimum period of circular orbits 
(Figure 4.2.8-2) 
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 (4.2.8:7) 
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Figure 4.2.8-2. The orbital 
period for circular obits with 
radius r0δ close to the critical 
radius rc. 
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Figure 4.2.8-1. In extreme gravitational 

conditions (r0δ  rc), the orbital velocity 
for a circular orbit goes to zero after 
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r0δ = 2rc or, when related to the velocity 
of light in apparent homogeneous space 

vorb(max(0δ )) = 0.32 c0δ, at r0δ = 4rc. 

 



158 The Dynamic Universe 

 

 
 Schwarzschild space DU space 

1) Velocity of free fall 2δ GM rc=  ( )2 1 2ffβ δ δ= −
 

(coordinate velocity) 
( ) ( ) ( )= − − −
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0
1 1 1

ff δ
β δ δ  

(eq. 4.1.6:15 & 4.1.6:12) 

2) Orbital velocity at circular orbits 
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 (eq. 4.2.8:3) 

3) Orbital period in Schwarzschild 
space (coordinate period) and in DU 
space 
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4) Perihelion advance for a full revo-
lution 
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Table 4.2.8-I. Predictions related to celestial mechanics in Schwarzschild space 41 and in DU space. 
In DU, space velocity β is the velocity relative to the velocity of light in the apparent homogene-
ous space of the local singularity, which corresponds to the coordinate velocity in Schwarzschild 
space. 

The black hole at the center of the Milky Way, at compact radio source Sgr A*, has 

the estimated mass of about 3.6 times the solar mass which means Mblack hole  7.21036 kg. 
When substituted for M in (4.2.8:7) the prediction for the minimum period in a circular 

orbit around the black hole is about 14.8 min, which is in line with the observed 16.8  2 
min period 42, Figure 4.2.8-2. Table 4.2.8-I cmpares important predictions in Schwarz-
schild space and DU space. 

The velocity of free fall, vff, reaches the local velocity of light at r0δ  3.414 rc where the 

tilting angle of space is ψ = 45.  
In binary pulsars, the mass of the emitting neutron stars is typically about 1.5 times 

the mass of the Sun corresponding to a critical radius about rc  2.3 km. The estimated 
radius of typical neutron stars is about 8 km which corresponds roughly the distance 

3.414 rc , where the velocity of free fall reaches the local velocity of light. Such a condi-
tion may be favorable for matter to radiation and elementary particle conversions, Figure 
4.2.8-3. 

 

Im0δ 

c"0δ 

rc 

45 

r0δ (45) = 3.414 rc 

Figure 4.2.8-3. In a local singularity, 

space is tilted 90. At the tilting angle 

45 degrees, the velocity in free fall 
reaches the local velocity of light. 
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4.2.9 Orbital decay 

In general relativity, orbiting bodies are predicted to emit gravitational radiation as a 
consequence of the chaging quadrupole moment of orbiting systems. The energy released 
results in a decreasing orbital period that is strong enough to be observed in binary pulsar 
systems. In the DU framework, the orbital decay of binary systems can be related to the 
rotation of the 4D angular momentum due to the periastron advance of eccentric orbits. 
In the DU solution, circular orbits are not subject to decay but the prediction obtained 
for the decay of eccentric orbits is essentially the same as the corresponding GR predic-
tion based on the quadrupole moment. 

The effect of orbit plane rotation on the angular momentum of the orbit  

Elliptic orbits are subject to periastron advance which can be described as rotation of 
the obit plane. The tilting of space results in tilting of the obit plane relative to the flat 
space plain. Accordingly, periastron advance means rotation of the obit plane around the 
normal, the z-coordinate direction, of non-tilted space. The rotation of the orbit plane 
means rotation of the 4D angular momentum of the orbit, Figure 4.2.9-1. The energy 
needed for the rotation is obtained against decay of the orbital period. 

According to DU, the z-coordinate (Im0 -axis) of an orbiting object can be expressed 
as 

( )2

0 0 0 02 2 1δ c δ δ δz r z r a e = − −
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 (4.2.9:1) 

The difference in z-coordinate between apastron and heliastron can be expressed as 
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Figure 4.2.9-1. The 4D angular mo-
mentum Lorbit of an eccentric orbit, in 
the direction of the Imδ axis of the or-
bital plane, rotates with the periastron 
advance of the obit. The energy re-
leased in the decay of the orbital period 
is assumed as the energy needed for the 
rotation of the angular momentum.  
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The increase of angular momentum related to the rotation of the orbit plane around 

the z0 axis due to periastron advance is 

( )2
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Δ
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πr c
r r e

δ

ψdL rdψ
L γ L A

dt dt a P
=      (4.2.9:4) 

where the angular velocity of the periastron advance is expressed in terms of the advance 

angle per a full cycle (2 ) with period P.  
Angular momentum Lr can be expressed in terms of the angular momentum of the 

orbital motion Lo as the share of the advance angle per a cycle ψ 
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Substitution of equation (4.2.9:5) to equation (4.2.9:4) gives 
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The period of Keplerian orbit can be related to the semimajor axis a as 
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 (4.2.9:8) 

The periastron advance of elliptic orbits for one period can be expressed 
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 (4.2.9:9) 

Substitution of a solved from equation (4.2.9:8) allows the expression of periastron 
advance in terms of the total mass and period m 
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 (4.2.9:10) 

In the case of double pulsars, the period and the periastron advance are observed 
quantities which means that equation (4.2.9:10) can be used for the determination of the 
total mass (M+m) of the system. In terms of solar mass  
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Keplerian orbit 

To express Lo in terms of the orbital period P we first apply the Keplerian relation m 
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= −  (4.2.9:12) 

The period time of Keplerian orbit can be related to the semimajor axis a as 
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The semimajor a can be solved from equation (4.2.9:13) as 
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Substitution of equation (4.2.9:14) to equation (4.2.9:13) we get 
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and P is solved as 
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where A is 
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Differentiation of (4.2.9:13) gives  
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Dependence of dP on dL in Keplerian orbit 

Reduction of angular momentum dLr by the rotation of the orbital plane was given by 
equation (8). Substitution of the negative of dLr for dLo in equation (4.2.9:18) gives the 
reduction of period required by the buildup of the angular momentum of the rotation of 
the orbital plane 
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and further, the time derivative of period P after substitution of (4.2.9:1) for  in 
(4.2.9:19) 
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Solving a from equation (4.2.9:13) gives 
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Substitution of equation (4.2.9:21) for and a0 in equation (4.2.9:20) gives 
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which after substation of Ae from equation (4.2.9:2) can be written as 
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 (4.2.9:23) 

GR prediction for the orbital decay  

The GR prediction for the decay of the orbital period is given in 43,64,65 
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where the numerical constant 195/5 ≈ 123, and the mass term is written in  form 
mpmc(mp+mc)1/3= mpmc/(mp+mc)2·(mp+mc)5/3 

By regrouping and substitution of rc = G(M+m)/c2 equation (4.2.9:23) obtains the 
form 
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 (24.2.9:25) 

where the numerical constant 54 √2 ≈ 240. Equation (4.2.9:25) applies for M >>m. By 
replacing the mass term based on central mass (M>>m) condition with the mass term for 
the binary star condition (M ≈ m) used in the GR solution, equation (4.2.9:25) obtains the 
form 
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 (4.2.9:26) 
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For a comparison with the GR equation, we take a factor of 2 from the factor 240 in 

(4.2.9:26) into the eccentricity factor resulting in 
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which now can be compared with the GR equation (4.2.9:24): 
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(4.2.9:28) 

The eccentricity factors in equations (4.2.9:27) and (4.2.9:28) of GR and DU are com-
pared in Figure 4.2.9-2. In the DU prediction, the eccentricity factor goes to zero at e=0, 
which means that there is no decay for circular orbits. The GR prediction shows decay 
also for circular orbits.   

 (a) (b) 

Figure 4.2.9-2. (a) The eccentricity factor of the decay of binary star orbit period. At the eccen-
tricity e = 0.616 of the PSR 1913+16 orbit the eccentricity factor of the GR and DU for the orbit 
decay are essentially the same and lead to same prediction for the decay. (b) The predicted (solid 
curve) and observed orbital decay (dots) of PSR B1913+16 binary pulsar. Picture: Wikimedia 
Commons. 

e 

PRS 1913+16 

GR prediction (4.2.9:28) 

DU prediction (4.2.9:27) 
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5. Mass, mass objects and electromagnetic radiation 

In the DU framework, the descriptions of mass objects, electromagnetism, and atomic 
structures can all be based on mass as wavelike substance. Such a unification means revis-
iting the basis and conclusions of Planck’s equation. We do not need to consider Planck’s 
equation as a heuristic finding violating classical electromagnetism, but a consequence of 
Maxwell’s equations solved for an emission of a single cycle of a harmonic oscillator. The 
unified perspective of mass and radiation allows the description of mass objects as reso-
nant mass wave structures – with results essentially the same as those obtained by quan-
tum mechanics. 

While relativity in the DU is expressed in terms of locally available rest energy, the ef-
fects of gravitation and motion are directly reflected to the energy states of atomic ob-
jects, and thereby to the characteristic emission and absorption frequencies.  

The linkage of Planck’s equation to Maxwell’s equation has exceedingly important 
consequences:  

 
- The solution reveals the embedding of the velocity of light in Planck’s constant. 

- The removal of the velocity of light from the Planck constant produces the “intrinsic Planck” con-
stant, h0 with dimensions of mass-meter [kgm]. 

- The renewed Planck’s equation demonstrates the linkage of mass and the wavelength of radiation 
– by enabling the definition of the wavelength equivalence of mass and the mass equivalence of 
wavelength, respectively. 

- The intrinsic Planck constant can be expressed in terms of fundamental electrical constants, the 
unit charge and the vacuum permeability. 

- The linkage between the fine structure constant and any other physical constant is removed. As a 
consequence, the fine structure constant appears as a purely numerical factor. 

- A quantum of electromagnetic radiation receives a precise expression: A quantum of radiation is 
the energy of a cycle radiation emitted by a single electron oscillation in the emitting object. 

- The linkage of mass and wavelength allows the description of mass objects as resonant mass wave 
structures. 
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5.1 The mass equivalence of radiation 

5.1.1 Quantum of radiation 

The Planck equation 

In the early 1900’s, the German physicist Max Planck concluded that if radiation in a 
cavity is in equilibrium with the atoms of the walls, there must be a correspondence be-
tween the energy distribution in the radiation and the energy state of the atoms emitting 
and absorbing the radiation. He described atoms as harmonic oscillators with specific 
frequencies and assumed that each oscillator absorbs or emits radiation energy only in 
doses proportional to the frequency of the oscillator. Mathematically, Planck expressed 
the idea with an equation stating that the energy in a single emission or absorption pro-
cess is proportional to the frequency as 

E hf=  (5.1.1:1) 

where h is the Planck constant, assumed to be the same for all oscillators. The message of 
Planck’s equation was, and still is, accepted as a law of nature in contradiction with classi-
cal electromagnetism and the Maxwell’s equation. 

In fact, the Planck equation is not in contradiction with classical electrodynamics once 
we specify the meaning of a single emission or absorption process as a cycle of oscillation 
of a unit charge in a harmonic oscillator. Obviously, the emission/absorption counterpart 
of such an oscillation cycle is a cycle of electromagnetic radiation.  

In order to find the solution, it is essential to relate the length of the dipole to the wavelength emitted – 
in the case of atomic oscillators the effective length of the dipole is not related to the atomic diameter but to 
the distance a point like emitter moves in the fourth dimension in a cycle of emission. In the DU frame-
work, such a distance is equal to the wavelength, i.e. a point emitter can be regarded as a one-wavelength 
dipole in the fourth dimension. In fact, such a conclusion is not too strange in the SR/GR framework 
either; for a point emitter at rest, the spacetime line-element in dt =1/f  is ds = cdt = c/f = λ. 

The energy described by the Planck equation (5.1.1:1) should be understood as the 
energy of one cycle of radiation emitted or absorbed by a harmonic oscillator per one unit 
charge oscillation. In his Nobel Prize lecture in 1920 Max Planck stated:  

“Either the quantum of action was a fictional quantity, then the whole deduction of the radiation law 
was in the main illusory and represented nothing more than an empty non-significant play on formulae, or 
the derivation of the radiation law was based on a sound physical conception. In this case the quantum of 
action must play a fundamental role in physics, and here was something entirely new, never before heard 
of, which seemed called upon to basically revise all our physical thinking, built as this was, since the estab-
lishment of the infinitesimal calculus by Leibniz and Newton, upon the acceptance of the continuity of all 
causative connections 66.” 

In the DU perspective, the Planck equation has solid basis in classical electrodynam-
ics. However, the concept of “a quantum of action” may be misleading – a revised inter-
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pretation of the Planck equation is obtained by removing the embedded velocity of light 
from the Planck constant. Such a revision reveals the intrinsic Planck constant with dimen-
sions of mass-meter [kg·m], and the Planck equation, as the energy of a cycle of electro-
magnetic radiation emitted by an atomic emitter by a single electron transition, obtains 
the form 

0
0 0 0

h
E h c f c c

λ
= =  (5.1.1:2) 

In equation (5.1.1:2), the quantity h0/λ has the dimension of mass [kg], which allows to 
it to be regarded as the mass equivalence of radiation. The concept of mass equivalence 
of radiation is of high value in a unified description of mass objects and radiation – the 
mass equivalence returns the energy of a cycle into the same form as the rest energy of a 
mass object. The concept of mass equivalence also applies in reverse – the wavelength 
equivalence of mass objects obtains the form of (5.1.1:2) by applying the wavelength equiva-
lence of mass, which for the rest mass is equal to the Compton wavelength.  

Maxwell’s equations: solution of one cycle of radiation 

Moving electric charges result in electromagnetic radiation through the buildup of 
changing electric and magnetic fields as described by Maxwell’s equations.  

The electric and magnetic fields produced by an oscillating electric dipole at distance r 
(r/z0 > 2z0/λ ) can be expressed as 
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and 
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where θ is the angle between the dipole and the distance vectors and  

0 0Π Nez=  (5.1.1:5) 

is the peak value of the dipole momentum, where N is the number of unit charges, e, os-
cillating in a dipole of effective length z0. Both field vectors, E and B, are perpendicular 
to the distance vector r.  

The Poynting vector, showing the direction of the energy flow, has the direction of r, 
Figure 5.1.1-1. The energy density of radiation can be expressed as E 
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where the vacuum permittivity ε0 is replaced with the vacuum permeability μ0 

0

0 0

1
μ

ε c c
=  (5.1.1:7) 

The factor χ in (5.1.1:6) is the frame conversion factor χ = c0/c defined in equation 
(4.1.4:13). The average energy density of radiation is 
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The average energy flow from the dipole is 
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With substitution of equation (5.1.1:5) for 0,  = 2π f = 2π c/λ, and χ = c0/c equation 
(5.1.1:9), the energy flow of one cycle of radiation can be expressed as 

( )
22 2 2 4 4

2 2 3 20 0 0
0 02 2

16 2 2
4 2

32 3 3
λ

N e z χμ π f zP
E πr N π e μ c f

f π r c f λ

 
= = =  

 
 (5.1.1:10) 

In equation (5.1.1:10) N 2 is the intensity factor related to the number of electrons os-
cillating in the dipole, the ratio (z0/λ) relates the dipole length to the wavelength emitted, 
the factor 2/3 is the ratio of average energy in a cycle emitted by the dipole to the energy 
in a cycle emitted by a hypothetical isotropic dipole. The factor (2π 3e 2μ0c0) has the dimen-

sions of momentum–length, like Planck’s constant h, and the numerical value 5.99710–

34 = h/1.1049 [kgm2/s], assuming, that c0  c.  
Due to the motion of space in the fourth dimension at velocity c, a point source at rest 

in local space moves a distance r4 = c·T =   in the fourth dimension. An atomic emit-
ter/absorber can be studied as a point source, as a one wavelength dipole in the fourth 
dimension. As a first approximation, the emission/absorption of such a source has the 
form of equation (5.1.1:10) with z0 = λ and factor χλ relating the energy of a cycle to the 
energy of a cycle of a hypothetical isotropic one wavelength dipole    

( )2 3 2 2 2 2 0
0 0 0 0 02λ λ

h
E N χ π e μ c f N h f N h c f N c c

λ
= =  =   =  (5.1.1:11) 

By relating equation (5.1.1:11), with N = 1, to the Planck equation we can find out 
that the value of factor χλ is close one, χλ = 1.1049. The Planck constant h can now be 
expressed in terms of fundamental physical constants e and μ0 as 

3 2 3 2

0 0 0 02 1.104905316 2λh χ π e μ c π e μ c=  =   (5.1.1:12) 

Figure 5.1.1-1. An electric 
dipole in the direction of 
the z-axis results in maxi-
mum radiation density in 
the normal plane of the 
dipole, θ = π/2. 
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Figure 5.1.1-2. Determination of the Planck constant with five different methods: Watt balance, 
X-ray crystal density, Josephson constant, Magnetic resonance and Faraday constant. The estimat-
ed accuracy of each method is shown by the vertical bars in the figure. The CODATA 2006 value 
of the Planck constant is fixed to the Watt balance value, which is the most accurate method. All 
measured values lie within about a one ppm range, which is the level of deviation we may assume 
resulting from a different effect of the c0/c ratio in different methods. 

The physical basis of the factor χλ = 1.1049 has not been solved analytically. It can be 
regarded as the geometrical factor of a point emitter as an antenna in the fourth dimen-
sion.  One of the factors in χλ is the ration c0/c. The difference between c0 and c  is esti-
mated to be of the order of 1ppm. The c0/c ratio does not explain constant χλ  but it may 
result in a different effect in different methods used to determine the exact value of the 
Planck constant, Figure 5.1.1-2.  

The intrinsic Planck constant 

Equations (5.1.1:11-13) reveal the physical basis of the Planck equation, and relate the Planck con-

stant to primary electrical constants. They also show that the velocity of light c0≅ c is a hidden factor in 
the Planck constant.  

In the last two forms of equation (5.1.1:11) the velocity of light is removed from the 
Planck constant by introducing the intrinsic Planck constant h0 

3 2 42

0 02 2.210219 10λ

h
h χ π e μ

c

−= =  =   [kg·m] (5.1.1:13) 

The intrinsic Planck constant has dimensions of [kg·m]; accordingly, the quantity h0/λ 
has dimensions of mass [kg]. For the emission of a single electron oscillation by a Planck 
source, equation (5.1.1:11) obtains the form of the Planck equation 

0
0 0 0 0 0 0λ λ

h
E hf c h f c c c m c

λ
= = = =   (5.1.1:14) 

where mλ0 is the unit mass equivalence of a cycle of radiation of a Planck emitter 
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CODATA 2006: h = 6.62606896·10–34 [kgm2/s] 

Source: http://en.wikipedia.org/wiki/Planck_constant 
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h
m

λ
=  (5.1.1:15) 

per a single electron transition in the emitter. 
For parallel transitions of N electrons in a cycle the energy emitted by a Planck source 

is  

( )
2 2 2 20

0 0 0 0 0 0λ λλ N

h
E N hf N c h f N c c N c m c c m c

λ
= = = =  =   (5.1.1:16) 

where mλ = N 2h0/λ = N 2m0λ expresses the total mass equivalence emitted in a cycle by N 
electrons in the source. The energy of N1 cycles of radiation emitted by single electron 
transitions has the original form of the Planck equation proposed by Max Planck 

( )1

0
1 1 0N λ

h
E N hf N c c

λ


 
=  =  

 
 (5.1.1:17) 

The derivation of equations (5.1.1:10-17) correspond closely to the original idea of a quantum of ra-
diation suggested by Max Planck about 1900 – Max Planck assumed that atoms on the walls of a 
blackbody cavity behave like harmonic oscillators with different characteristic frequencies. Such oscillators 
work like narrow band antennas emitting and absorbing radiation corresponding to the oscillator’s fre-
quency. As the smallest dose of radiation, he postulated a quantum of radiation, which in the light of 
equation (5.1.1:10) means a single electron transition in the emitter.  

Physical meaning of a quantum 

In a full agreement with Max Planck’s original idea, a quantum of radiation is related to energy ex-
change between radiation and the receiving or sending oscillator (antenna). Atomic emitters and absorbers 
are regarded as resonators sensitive to the radiation with the nominal frequency of the resonator. 

An antenna is not selective to the energy of radiation but to the wavelength of radia-
tion. The energy of radiation is subject to the intensity as given in equation (5.1.1:16). The 
minimum energy emitted into one cycle of radiation is the quantum of radiation due to a 
single electron transition in the antenna as defined in equation (5.1.1:14). 

Absorption of a quantum of radiation requires that 1) the wavelength of the wave to 
be absorbed is matched to the nominal wavelength of the antenna, and 2) the energy of 
the wave within the effective area of the absorber (antenna) is at least the energy of a 
quantum, i.e. the energy required to result in a single electron transition in the absorber, 

( ) ( )2 0
0 0 0 0

1)

2) 2

absorber radiation

λ eff λ λ λ

λ λ

h
E A E G λ π E c c c m c

λ

=

=  = = 
 (5.1.1:18) 

For a dipole, in the direction of the normal plane, the effective area in 2) is 

23

2 4
eff

λ
A

π
=  (5.1.1:19) 

which is equal to a circular area with diameter   
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( )

3
0.19

2 2
A eff

λ
d λ

π
=    (5.1.1:20) 

As shown by equation (5.1.1:10) the Planck equation is not in contradiction with clas-
sical theory of electromagnetism and the Maxwell’s equation. Essential for such a conclu-
sion is that the quantum of radiation is understood as the energy emitted or absorbed by 
a single electron transition in a cycle.  

Applying the intrinsic Planck constant, the momentum of a quantum of radiation with 
wavelength λ can be expressed as 

0
0 0 0 0λ λ

h
p h f c ћ k c m c

λ
= = =  =  (5.1.1:21) 

where ћ0 =h0/2π and k =2π/λ is the wavenumber corresponding to wavelength λ. 
 
A quantum of electromagnetic radiation is defined as a cycle of radiation emitted by a quantum emit-

ter. An atom emitting electromagnetic radiation has the properties of a quantum emitter or a Planck 
source.  

Equation (5.1.1:21) defines the momentum of a radiation quantum in terms of the mass equivalence 
of a cycle of radiation, m0λ= h0/λ. An implication of equation (5.1.1:21) is that the momentum of a 
radiation quantum cannot be defined or determined in a distance less than a wavelength. In order to ob-
tain full information about the substance available for the expression of momentum, we need to observe the 
full wavelength of radiation. 

The intensity factor 

Applying the concept of a quantum for the emission of a standard dipole, equation 
(5.1.1:10) can be re-written into the form 
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= =

 (5.1.1:22) 

where Iλ is the intensity factor, and mλ is the mass equivalence of a radiation cycle emitted by 
N electrons oscillating in a dipole with effective length z0. Generally, the intensity factor 
and the mass equivalence of radiation emitted are expressed as 

2
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λ

λ

λ λ

z A
I N

λ χ

h
m I

λ

 
=  

 

=

 (5.1.1:23) 

where A is a geometrical factor characteristic the type of antenna (A = 2/3 for the dipole 
described by equation (5.1.1:10)). Equations (5.1.1:22) and (5.1.1:23) applies to any anten-
na emitting or receiving electromagnetic radiation. 
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5.1.2 The fine structure constant and the Coulomb energy 

The fine structure constant 

The fine structure constant α is traditionally defined as  

2 2

0 0

02 2

e μ c e μ
α

h h
 =  (5.1.2:1) 

Substitution of equation (5.1.1:14) for h0 in equation (5.1.2:1) gives the fine structure 
constant in the form 

2
30

3 2 3

0

1 1
7.2973525376 10

2 2 4 137.0360λ λ

e μ
α

χ π e μ π χ

−= = 
 

 (5.1.2:2) 

Equation (5.1.2:2) shows the very fundamental nature of α as a purely numerical factor 
without any relationship to physical constants. 

The fine structure constant α is a dimensionless factor independent of any dimensioned physical con-
stant (5.1.2:2). 

The Coulomb energy 

The traditional form of Coulomb energy of point-like charges q1 and q2 at a distance r 
from each other is 

2

01 2
1 2 0

04 4
EM

e μq q
E N N c c

πε r πr
= =  (5.1.2:3) 

where, in the last form, charges q1 and q2 are expressed in term of unit charges as N1e and 
N2e, and the vacuum permittivity ε0 in terms of μ0 (equation (5.1.1:7)). 

In equation (5.1.2:3) the factor N1N2e2μ0/4π has the dimension of mass. Substitution 
of equation (5.1.2:1) for e2μ0 in equation (5.1.2:3) obtains the form 
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1 2 0 1 2 0 1 2 0 0

4
EM EM

r

e μ ћ h
E N N c c N N α c c N N α c c m c c

πr r L
= = = =  (5.1.2:4) 

where Lr is the circumference of a circle with radius r, i.e. the length of an equipotential 
orbit around the accompanying charge. Equation (5.1.2:4) reveals the mass equivalence of 
Coulomb energy of point-like charges N1e and N2e at distance r from each other 
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= = =  (5.1.2:5) 

For unit charges at a distance r from each other, the mass equivalence is  
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Box 5.1.2-A 
 
Due to the motion of space, objects at rest in space move at the velocity of light in the 

fourth dimension. The action of the imaginary motion on electrical charges at rest in space 
can be regarded as electromagnetic interaction between them, formally identical with the 
Coulomb force.  

The electromagnetic force created between charges q1 and q2 can be derived by applying 
the conventional expression of magnetic force F¤

EM as  

( )¤ ¤

1
i

EM
q= F c B  (5.1.2:A1) 

where ic is the imaginary velocity of q1 and q2 and B¤ is the magnetic flux density [Vs/m2] 
generated by the motion of q2 at distance r. B¤ can be expressed as (see Figure 5.1.2-A1) 

( )¤ 2 0

2
ˆi

4

q μ

πr
= B c r  (5.1.2:A2) 

In equation (5.1.2:A2), μ0 is the permeability of the vacuum (i.e. space), r is the distance 
between q1 and q2, and r̂  is a unit vector in the direction of r. Since the space direction r̂  is 
perpendicular to the imaginary direction, the magnetic force F¤

EM between charges q1 and 
q2 can be expressed with the aid of equations (5.1.2:A1) and (5.1.2:A2) as 
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r r

 (5.1.2:A3) 

The derivation of equation (5.1.2:A3) shows that the electromagnetic force generated 
by the imaginary velocity of space is opposite in sign to the electromagnetic force generated 
by parallel motion of charges in space. Electrical currents flowing in the same direction in 
parallel conductors, result in an attractive force whereas currents in opposite directions re-
sult in a repulsive force between the conductors. In ion beams the attractive effect is ob-
served as constriction of the discharge (the pinch effect). Due to the square of the imagi-
nary unit i 2 = –1 in equation (5.1.2:A3), the expression for the effect of the motion of 
space on electrical charges obtains a form identical to Coulomb law. 
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ic" Figure 5.1.2-A1. The electrostatic 
interaction (Coulomb force) be-
tween electrical charges at rest in 
space can be described as a magnetic 
interaction due to the imaginary mo-
tion of space. 
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The energy released by a Coulomb system, for example in an accelerator, can be ex-
pressed in terms of the release of mass 

( ) ( ) ( ) ( )( ) 0 01 2 1 2
Δ ΔEM EMEM EM EM EM

E E E m m c c m c c= − = − =  (5.1.2:7) 

that appears as the mass contribution of the kinetic energy of the accelerated object (see 
equation 4.1.2:5). Traditionally, Coulomb energy is derived from static Coulomb force 
postulated for charges at rest in space. Formally, the motion of space at velocity c in the 
fourth dimension creates a magnetic force between charges at rest in space (Box 5.1.2-A).  

Energy carried by electric and magnetic fields 

In expanding space, the vacuum impedance decreases in direct proportion to the de-
creasing velocity of light 

0
0

0
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μ
Z μ c

ε
= = =  (5.1.2:8) 

where E is the electric field, and H is the magnetic field. 
In spite of the change in the ratio between electric and magnetic fields in electromag-

netic waves, the energies carried by the electric and magnetic fields remain equal. The en-
ergy density of an electromagnetic wave is  

( )2 2

0 0

1
 = E H

2
E ε μ+  (5.1.2:9) 

Substitution of equation (5.1.2:8) for E and H in (5.1.2:9), and 0 = 1/0c2 gives the 
energy density of an electromagnetic wave in terms of the magnetic field 
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 (5.1.2:10) 

and the electric field 
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, (5.1.2:11) 

respectively. 

5.1.3 Wavelength equivalence of mass 

The Compton wavelength 

Applying the concept of mass equivalence, the momentum of electromagnetic radia-
tion obtains a form equal to that of the rest momentum and rest energy of mass objects. 
Equations (5.1.1:22) and (5.1.1:15) show the momentum and energy of a quantum of ra-
diation in form of the rest momentum and rest energy  

λ λp m c=  (5.1.3:1) 
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0λ λE c m c=  (5.1.3:2) 

The difference, however, is that the momentum of electromagnetic radiation appears 
in the direction of the propagation of the radiation in space direction only, whereas the 
rest momentum of matter appears in the fourth dimension. 

The concept of mass equivalence of radiation can be extended to its inverse quantity, 
the wavelength equivalence of mass 

0

0

2
andm m

h π m
λ k

m λ ћ
= = =  (5.1.3:3) 

where ћ0 is the intrinsic reduced Planck constant ћ0 = h0/2π. The rest energy of mass m can be 
expressed as 

0
0 0 0 0 0rest rest m

m

h
E c c mc c c c ћ k c

λ
= = = =p  (5.1.3:4) 

The wavelength and wavenumber equivalences of mass m in (5.1.3:4) can be identified 
as the Compton wavelength and wavenumber 

0
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Compton m Compton m

hh mc m
λ λ k k

mc m ћ ћ
 = =  = =  (5.1.3:5) 

Wave presentation of the energy four vector 

The energy-momentum four-vector is traditionally written in the form 

( ) ( )
22 2 2 2

m tot
E c mc c p= +  (5.1.3:6) 

In the DU framework, total energy of a mass object m, moving at velocity β in the lo-
cal energy frame, is presented as a complex function [see equation (4.1.2:11)]  

( ) ( ) ( )
22¤ ¤ 2

0 0 0i β βm tot
E E c p c m βc mc c mc m βc= = = + = +  (5.1.3:7) 

where mβ is the mass contributing to the real component of the momentum [see equation 
(4.1.2:10)] 

( )
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0 0Δ 1 1β mm β
m m m m β ћ k ћ k β= + = − = = −  (5.1.3:8) 

where the last two forms apply the wave number equivalence of mass as defined in equa-
tion (5.1.3:3). The wave number presentation of the total energy of (5.1.3:7) obtains the 
complex form 

( ) ( ) ( ) ( )¤

0 0 0 0 0 0i sin i cosmm tot m β m β
E c ћ k βc c ћ k c c ћ k c φ φ= + = +  (5.1.3:9) 

or in algebraic form  
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Division of equation (5.1.3:9) by c0 gives the complex presentation of the total mo-

mentum 

( ) ( ) ( )¤

0 0 0i cos i sinmm β m β
p ћ k βc ћ k c ћ k c φ φ= + = +  (5.1.3:11) 

and further dividing by (ћ0c) returns the complex presentation of the wave number of the 

total mass m, Figure 5.1.3-1 
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−
 (5.1.3:12) 

In equation (5.1.3:12), the quantity βkm(β) can be identified as the de Broglie wave 
number 

( )
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2 β β

dB m β
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βc m βmπ
k βk

λ ћ ћ


= = = =  (5.1.3:13) 

The real component of the complex momentum in (5.1.3:11) can be expressed in the 
forms 

( )0 0' dBm β
p ћ k βc ћ k c=  =   (5.1.3:14) 

where 

1) the first form describes a mass wave with wave number kβ propagating at ve-
locity βc, and  

2) the second form describes a mass wave with de Broglie wave number kdB prop-
agating at velocity c.  

The physical meanings of the two interpretations are discussed in Section 5.3. 

There are no classical “mass particles” in the Dynamic Universe. A mass object in DU 
space can be described as a standing wave structure characterized by the Compton wave-
length. The momentum of a mass object can be expressed in terms of a wave front with 
wavelength λβ of (5.3.4:3) propagating along with the object at velocity βc in space (see 
Section 5.3.4). 
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k

Re 
φ 

( )=dB m β
k βk
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mk
Figure 5.1.3-1. Complex wave number 
presentation of the energy-momentum four-
vector 
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Resonant mass wave in a potential well 

In a potential well, i.e. in a closed 1-dimensional space of length a, harmonic waves 
may propagate in both directions, i.e. the wave configuration is the sum of the waves 
along x and –x directions 

( ) ( )0 0sin ' sinψ ψ ωt kx ψ ωt kx= + + −  (5.1.3:15) 

As a requirement of the boundary conditions at x = 0 and x = a, the amplitude of the 
wave has to be zero. The boundary condition at x = 0 means  

( )0 0 0 0 0' sin 0 i.e. 'xψ ψ ψ ωt ψ ψ= = + = = −  (5.1.3:16) 

Substitution of (5.1.3:16) to (5.1.3:15) gives 

( ) ( )0 0sin sin 2 cos sinψ ψ ωt ka ωt ka ψ ωt kx= + − − =    (5.1.3:17) 

To fulfill the boundary condition at x = a, sin(kx) must be zero at a = a, i.e. 

kx = na, resulting in 

02 cos sin
nπ

ψ ψ ωt
a

=  (5.1.3:18) 

In the case of a mass object in a one-dimensional potential well the wave number in 
the direction of the real axis across the potential well has to fulfill equation (5.1.3:18) 

r

nπ
k

a
=  (5.1.3:19) 

The momentum of the object consists of half-wave momentums propagating in op-
posite directions, which means that the net momentum is zero in the potential. Substitu-
tion of the wave number kr into (5.1.3:19) for the expression of kinetic energy obtained 
by combining equations (5.1.3:10) and (4.1.2:12), gives the energy levels available in the 
potential well, Figure 5.1.3-2 
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 (5.1.3:20) 

 
Figure 5.1.3-2. Resonant mass wave ( wave number kr ) as the real component of the complex 
momentum pr = ћ0kr c. 
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Substitution of the rest mass wave number km = m/ħ0 (=Compton wave number) into 
(5.1.3:20) we get 

2 2 2
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a ћ a m
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  
 (5.1.3:21) 

The first form of (5.1.3:21) is the “relativistic solution” solution, and the last form is 
the first order approximation equal to the result obtained from the Schrödinger equation. 

5.1.4 Hydrogen-like atoms 

Principal energy states 

Applying the concept of a mass wave, the base energy states of an electron in hydro-
gen-like atoms can be solved by assuming a resonance condition of the de Broglie wave 
in a Coulomb equipotential orbit around the nucleus. With reference to equation (5.1.2:4) 
the Coulomb energy of Z electrons at distance r from the nucleus is 

0 0
0 0

2
Coulomb

h ћ
E Zα c c Zα c c

πr r
= − = −  (5.1.4:1) 

For a resonance condition, the de Broglie wave length nλdB = 2πr, which is equal to 
wave number boundary condition 

dB

n
k

r
=  (5.1.4:2) 

With reference to equation (5.1.3:10) for the total energy of motion, the energy of an 
electron as the sum of kinetic energy and Coulomb energy in a Coulomb equipotential 
orbit with radius r is 

n kin CoulombE E E= +  (5.1.4:3) 

Substitution of (5.1.3:20) and (5.1.4:1) for Ekin and ECoulomb in (5.1.4:3) gives 
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 (5.1.4:4) 

The solution of (5.1.4:4) is illustrated in Figure 5.1.4-1; for each value of n, the total 
energy En is a continuous function of r. The “quantized” energy states are energy minima 
of En for each value of n.  

To find the radius for minimum energy, we determine the zero of the derivative of 
(5.1.4:4) 
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 (5.1.4:5) 
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The solutions of (5.1.4:5) are 
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The radii for minimum energy En solved from (5.1.4:6) are 
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 (5.1.4:7) 

where the factor in front of the square root, for n =1, is equal to the classical Bohr radius. 
The classical notation of Bohr radius is obtained by substitutions of the fine structure 
constant α and the Compton wave number km into the front factor of (5.1.4:7). 
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 (5.1.4:8) 

where the first order approximation is equal to the result obtained from the standard so-
lution based on Schrödinger’s equation. The first order “relativistic correction” applied to 
standard solution is equal to the second order term in the serial approximation of the ex-
act form equation (5.1.4:8). 

To find the additional quantum numbers and the fine structure states, the wave equa-
tion should be solved for spherical harmonics. Such an analysis is left outside the scope 
of this treatise.  

The effects of gravitation and motion 

With reference to (4.1.4:9), the electron rest mass m in equation (5.1.4:8) is  
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Figure 5.1.4-1. Total energy of 
electron in hydrogen-like atoms 
for principal quantum number 
n = 1, n = 2, n = 3 according to 
equation (5.1.4:4). Orbital radii 
of the energy minima are 
r/rBohr=1, r/rBohr=4, and r/rBohr=8, 
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= −  (5.1.4:9) 

where me(0) is the electron mass at rest in hypothetical homogeneous space, and j means 
the electron moving in the nucleus frame. With reference to equation (4.1.4:10) the veloc-
ity of light in equation (5.1.4:8) is 

( )0
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1
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i

i

c c δ
=

= −  (5.1.4:10) 

Substitution of equations (5.1.4:9) and (5.1.4:10) into the last form of equation 
(5.1.4:7) gives the principal energy states of hydrogen-like atoms in the form 
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showing the dependence of the energy states of an atom on the state of motion and 
gravitation of the atom. 

The energy difference between two energy states is 
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Differences between the energy states of electrons determine the characteristic emis-
sion and absorption energies of atoms. Accordingly, equation (5.1.4:12) shows the de-
pendence of the characteristic emission and absorption energies on the gravitational state 
and motion of the atom in the local energy frame and in the parent frames.  

Characteristic absorption and emission frequencies 

Applying equation (5.1.4:12), the characteristic emission and absorption frequency 
corresponding to the energy transition ΔE(n1,n2) can be expressed as 
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where f0(n1,n2) is the frequency of the transition for an atom at rest in hypothetical homo-
geneous space 
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The velocity of the expansion of space, c0 = c4, is a function of the time from singulari-
ty. Substitution of equation (3.3.3:8) for c0 in equation (5.1.3:8) gives frequency f0(n1,n2) in 
the form  
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 (5.1.4:15) 
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which expresses frequency f0(n1,n2) in terms of the age of expanding space, the gravitational 
constant, and the total mass in space.  

The emission wavelength corresponding to the emission frequency of equation 
(5.1.4:13) and the energy transition ΔE(n1,n2) is 
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where 
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is the wavelength of radiation emitted by the energy transition ΔE(n1,n2) of the atom at rest 
in hypothetical homogeneous space. Substitution of equation (5.1.3:8) for f0(n1,n2) in equa-
tion (5.1.4:17) gives 
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 (5.1.4:18) 

Applying the standard solution of the Bohr radius (the approximate value of equation 
(5.1.4:7)) and equation (5.1.3:3), we can express the radius of the hydrogen atom as 
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where a0(0) is the Bohr radius of a hydrogen atom at rest in hypothetical homogeneous 
space 
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As shown by equations (5.1.4:18) and (5.1.4:19) both the emission wavelength and the 
atomic radius are functions of the velocity of the atom in the local energy frame and the 
velocities of local frame and the parents frames. The emission wavelength and the atomic 
radius, however, are not functions of the gravitational state, the local velocity of light or 
the expansion velocity of space. 

When h0 (solved in terms of α from equation (5.1.4:19)), and the Bohr radius a0(0) 
(solved from equation (5.1.4:20)) are substituted into equation (5.1.4:18), equation 
(5.1.4:16) can be expressed in the form 
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 (5.1.4:21) 
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which shows that the wavelength emitted is directly proportional to the Bohr radius of 
the atom.  

In fact, the last form of equation (5.1.4:21) is just another form of Balmer’s formula, 
which does not require any assumptions tied to the DU model. Equation (5.1.4:21) also 
means that, like the dimensions of an atom, the characteristic emission and absorption 
wavelengths of an atom are unchanged in the course of the expansion of space but are 
dependent on the velocity of the emitter and absorber in their local and parent frames. 

DU predicts an increase in the size of atoms (in three dimensions) due to motion, in-
stead of the length contraction in the direction of motion predicted by the special 

theory of relativity. 

 
The effects of motion and gravitation on the wavelengths and frequencies of atoms 

can be extended to electromagnetic resonators and lasers of macroscopic dimensions. 
The increase of atomic size with motion means that the dimensions of resonators cou-
pled to moving oscillators increase in direct proportion to the increase of the wavelength 
of the electromagnetic wave produced by the oscillator. 

The characteristic frequency of an atomic oscillator, unlike the wavelength, is subject 
to change with a changing velocity of light and the expansion of space. With reference to 
equations (5.1.4:15) and (3.3.3:8), the characteristic frequency f(t) at time t from the singu-
larity of space, when the 4-radius of space is R4(t), can be expressed as 
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  (5.1.4:22) 

where f(t0) is the frequency when the 4-radius of space is R4(t0), the velocity of light is c0(t0), 
and the time from the singularity is t0. 
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5.2 Effect of gravitation and motion on clocks and radiation 

5.2.1 Effect of gravitation and motion on clocks and radiation 

Applying equation (5.1.4:13), the frequencies of two identical atomic oscillators mov-
ing at velocities βA and βB in gravitational states δA and δB in a gravitational frame can be 
expressed as 

( ) 2

0 1 1A δ A Af f δ β= − −  (5.2.1:1) 

and 

( ) 2

0 1 1B δ B Bf f δ β= − −  (5.2.1:2) 

where f0δ is the frequency of the oscillators at rest in the apparent homogeneous space of 
the local gravitational frame 
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where frames i = 1…n–1 are the parent frames of the local gravitational frame n. 
Combining equations (5.2.1:1) and (5.2.1:2) allows the ratio of the frequencies fB and 

fA to be expressed as 
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and the relative frequency difference Δf/fA = (fB–fA)/fA as 
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Substituting equation (4.1.1:30) for δA and δB in equation (5.2.1:5) we get 
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 (5.2.1:6) 

When βA,βB ≪ 1 and δA,δB ≪ 1, then also cA  cB  c, and equation (5.2.1:6) can be ap-
proximated as 
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where the first term is the gravitational shift and the second term is the shift due to the 

motions. When rB – rA|/rA ≪ 1, equation (5.2.1:7) can be expressed as 
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f gh
β β

f c
= − −  (5.2.1:8) 

where h = rB–rA is the difference in altitude in the gravitational frame and g is the gravita-

tional acceleration at distance r = rA  rB from mass center M 

2

GM
g

r
=  (5.2.1:9) 

Equations (5.2.1:5–9) express the shift in the frequencies of atomic oscillators in dif-
ferent states of gravitation and motion. The equations are essentially the same as the ex-
pressions for the gravitational shift and the effect of motion on atomic oscillators in the 
general theory of relativity. The validity of the equations has been confirmed in numerous 
experiments (see Chapter 7). 

Instead of explaining the effects of motion and gravitation on an atomic clock as a 
frequency shift, the theory of relativity explains them in terms of proper time, as a change 
in the flow of time for an object in motion and a different state of gravitation relative to 
the observer. 

On the basis of equations (5.2.1:1–3), a general expression for the ratio of the fre-
quencies of two identical atomic oscillators is 
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where δAi,  δBi and βAi, βBi describe the states of gravitation and motion in the local energy 
frame and in the nested parent frames relevant to oscillators A and B. 

In general relativity, the combined effect of motion and gravitation on the “proper 
frequency” of atomic oscillators in a local gravitational frame is given by the equation 

2

, 0,0 1 2δ βf f δ β= − −  (5.2.1:11) 

where 
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GM
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Equation (5.2.1:11) of general relativity corresponds to equation (5.2.1:1) in the Dy-
namic Universe. The difference between the GR and DU equations appears only in the 
4th order terms in the series approximations of equations (5.2.1:1) and (5.2.1:11) 

( ) ( ) 2 2 4 2

0,0 0,0,

1 1 1

2 8 2
1 1 1

δ β DU
f f δ β f δ β β δβ

 
= − −  − − − + 

 
 (5.2.1:13) 

and  
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The difference between the DU and GR frequencies in equations (5.2.1:13) and 

(5.2.1:14) is 

( )
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,
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δ β DU GR
f δβ δ

−
 +  (5.2.1:15) 

The difference given by equation (5.2.1:15) is too small to be detected with clocks in 
Earth satellites or spacecraft in the solar gravitational frame, Figure 5.2.1-1(a). The differ-
ence, however, is essential in extreme conditions where δ and β approach unity, Figure 
5.2.1-1(b). 

5.2.2 Gravitational shift of electromagnetic radiation 

As discussed in the previous section, the frequency of an atomic oscillator is a func-
tion of its gravitational state. The frequency of oscillation is reduced as the δ-factor char-
acterizing the gravitational state increases. 

When an atomic oscillator at rest in δA-state emits radiation at the oscillation frequen-
cy fA, the frequency received by an object at rest in δB state is the same, fA. In a steady 
state, because of the absolute time the same number of cycles emitted in a time interval 
will also be received. 

The wavelength of the signal sent from the object at rest in the δA-state can be ex-
pressed in terms of the frequency, fA, and the local velocity of light, cA, as 
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Figure 5.2.1-1(a). The difference in the DU 
and GR predictions of the gravitational 
correction of atomic oscillators in different 
gravitational states. On the surface of the 

Earth δ  10–9 and the difference in the two 
predictions appear in the 18:th decimal. 

Figure 5.2.1-1(b). The difference in the DU 
and GR predictions of the frequency of 
atomic oscillators at extreme conditions 

when δ = β 2 → 1. Such condition may ap-
pear close to a black hole in space. The GR 
and DU predictions in the figure are based 
on equations (5.2.1:11) and (5.2.1:13), re-
spectively. 
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With reference to equations (4.1.1:23) and (5.2.1:1), equation (5.2.2:1) can be ex-
pressed as 
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which shows that, because the oscillation frequency and the local velocity of light depend 
in a similar way on the gravitational state, the wavelength emitted is independent of the 
gravitational state of the emitting object in the gravitational frame in question. According-
ly, the wavelength of the radiation sent by an object at rest in δB-state is 
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When radiation sent by an object at rest in δ-state is received by an object at rest in 
δB-state, the frequency received is fA. The velocity of light in the δB-state is cB. Thus, the 
wavelength received is 
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f
=  (5.2.2:4) 

Substituting equation (5.2.2:1) for fA in equation (5.2.2:4), λA(B) can be expressed as 
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and by further applying equations (5.2.2:2) and (5.2.2:3) we get 
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Figure 5.2.2-1. The velocity of light is lower close to a mass center, c  < c which results in a de-
crease of the wavelength of electromagnetic radiation transmitted from A to B. Accordingly, the 
signal received at B is blueshifted relative to the reference wavelength observed in radiation emit-
ted by a similar object in the δB-state. The frequency of the radiation is unchanged during the 
transmission.  

λrec= fB /fA λB 
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That is, the wavelength sent by the oscillator in the δA-state is changed by a factor 
equal to the inverse of the ratio of the corresponding frequencies in the two gravitational 
states, Figure 5.2.2-1.  

Equation (5.2.2:6) expresses the gravitational redshift or blueshift of electromagnetic 
radiation. The frequency of electromagnetic radiation does not change when the radiation 
travels from one gravitational state to another. However, the wavelength of the radiation 
is shifted due to the different velocity of light in different gravitational states. 

The DU model makes a clear distinction between the gravitational effects on the fre-
quency and wavelength of atomic oscillators and the gravitational effects on the frequen-
cy and wavelength of electromagnetic radiation. 

The DU predictions of the gravitational shifts of the frequencies and wavelengths of 
atomic oscillators and electromagnetic radiation are in a complete agreement with exper-
iments (see Chapter 7). 

The characteristic frequency of an oscillator is directly proportional to the local velocity of light in the 
gravitational state of the oscillator. 

The characteristic wavelength of electromagnetic radiation sent by an oscillator is independent of the 
gravitational state in which the oscillator is located. 

The gravitational red or blue shift of electromagnetic radiation is the shift of the wavelength of the ra-
diation due to the difference in the velocity of light at different gravitational states. No change in the fre-
quency of the radiation occurs during propagation. 

5.2.3 The Doppler effect of electromagnetic radiation 

Doppler effect in local gravitational frame 

The Doppler effect of electromagnetic radiation is derived analogously to the Doppler 
effect of any wave motion emitted by a source in motion relative to the state of rest in the 
propagation frame and received by an observer also moving relative to the state of rest in 
the propagation frame. If the source and the receiver both are objects in the same gravita-
tional state in a local gravitational frame, the propagation velocity is the local imaginary 
velocity of space in the frame.  

The motion of the source in the local gravitational frame affects both the characteris-
tic frequency of the source and the wavelength emitted in different directions. The short-
ening of the wavelength, the Doppler effect, is governed by the distance the source 
moves during a cycle in the direction of the wave emitted. If the velocity of the source is 
vA, the change in the wavelength of radiation emitted in the direction r is  
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where T =1/f  is the cycle time, λA(β ) is the characteristic wavelength of the source mov-

ing at velocity βA in the δ-state, ˆ
Av and r̂  are the unit vectors in the directions of vA and r, 

respectively, and ( )
ˆ

AA
β = 

r
β r  is the component of velocity βA in the direction of r, Fig-

ure 5.2.3-1.  
The wavelength emitted in direction r is 
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 (5.2.3:2) 

By substituting (5.2.3:2) into (5.1.1:22), the momentum of the radiation emitted in the 
r direction by a source with velocity βA(r) in the direction of the emission is 
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The momentum of radiation observed in the r direction by a receiver moving at veloc-
ity vB in the δ-state is 
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where 
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is the component of velocity βB in the direction of r and  
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is the effective velocity at which the radiation is received in the direction of r (the velocity 
of light minus the velocity of the receiver in the local gravitational frame). 

Substituting equation (5.2.3:3) for h0/λrA in equation (5.2.3:4) we get 
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Figure 5.2.3-1. The wavelength of 
electromagnetic radiation emitted by 
a moving source is shortened in the 
direction of the motion by the dis-
tance moved by the source during 
the cycle time, Δλ = λ

0
 v/c.  
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The wavelength of radiation from two identical emitters at rest in the same gravita-
tional frame is the same, λA(0) = λB(0) = λ0. The wavelength of radiation from a reference 
oscillator moving with the receiver at velocity βB is  

( )
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Substituting equation (5.2.3:8) into equation (5.2.3:7) gives the observed momentum 
in terms of the wavelength λB of the reference oscillator in the same δ-state as 
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By applying equation (5.1.1:22) for h0/λB·c, equation (5.2.3:9) can be expressed in 
terms of the frequency of the radiation observed as 
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which combines the effect of the Doppler shift and the effects of the different velocities 
of the source and reference oscillators on the frequency of each oscillator, Figure 5.2.3-2.  

If the source and the receiver are in different gravitational states δA and δB, equation 
(5.2.3:10) need to be supplemented with the effect of gravitation in accordance with equa-
tions (5.2.1:1) and (5.2.1:2), as 
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Substituting equation (5.2.1:4) for fB in equation (5.2.3:11) gives 
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where fA and fB are the frequencies of the source and the reference oscillators moving 
with the receiver 
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where f0δ is the frequency of the oscillators at rest in the apparent homogeneous space of 
the local gravitational frame. 

Equations (5.2.3:11) and (5.2.3:12) can be expressed in terms of wavelengths related to 
velocity c as 
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and 
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where 
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where λA(0) = λB(0) = λ0 is the wavelength of the oscillators at rest, i.e., the wavelength 
emitted by the oscillators at rest in the local gravitational frame. 

Equations (5.2.3:12) and (5.2.3:15) are essentially identical with the classical Doppler 
equations just as equations (5.2.3:11) and (5.2.3:14) correspond to the Doppler equations 
derived from the general theory of relativity. In the terminology of the theory of relativity, 
the effect of motion on the oscillators is referred to as the “time dilation term” or the 
“transversal or secondary Doppler effect”, and the gravitational effect is referred to as the 
gravitational red- or blueshift 67,68. 

Doppler effect in nested energy frames 

If the source and the receiver are in different energy frames, the frequencies of the 
corresponding oscillators are calculated from equation (5.2.1:10). The simplest approach 
to calculate the effects of the motions of the source and the receiver within their parent 
frames is to follow the same procedure as we did for the source and an object in the same 
frame by considering each frame as an object in its parent frame. On the source side, the 
wavelength is reduced in each step from the local frame towards the “root” parent frame 
and finally to hypothetical homogeneous space. With reference to equation (5.2.3:2), the 
wavelength emitted to hypothetical homogeneous space step by step through the chain of 
nested energy frames can be deduced as 
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Figure 5.2.3-2. The Doppler effect 
combines the effects of the veloci-
ties of the source and the receiver in 
the direction of the signal path.  
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At the receiver, with reference to equation (5.2.3:6), in the nth frame the effective ve-
locity of the receiving signal propagating in hypothetical homogeneous space is 
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and the momentum observed in a signal with wavelength λA[0](r) in hypothetical homoge-
neous space is 
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Substitution of equation (5.2.3:17) for λrA[0] in equation (5.2.3:19) gives the momentum 
as 
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where frequency fA(B) is the Doppler shifted frequency of a signal emitted by source A 
and received by B 
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where fA = h0/λrA[n] is the frequency of the source in its local frame A[n]. 
Equation (5.2.3:21) can be written in the form 
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which demonstrates the elimination of the effects of the “root” parent frames 1 to k 
common to both the source and the receiver.  

In equation (5.2.3:22), the k:th frame is the first root frame serving as the reference at 
rest for the transmission of a signal from the source to the receiver. As shown by equa-
tion (5.2.3:22), the effects of the motions of frames 1 to k on the Doppler effect are can-
celled, Figure 5.2.3-3.  
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Figure 5.2.3-3. Transmission of electromagnetic radiation from the source at rest in frame A(k+3) to 
the receiver at rest in frame B(k+1). The motions of frames A(k+1) … A(k+3) result in a change of the 
wavelength in radiation propagating in the Mk frame. 
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In the k-frame the momentum of the radiation is 
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and in the B(k+1) frame 
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All the nested frames should be understood to be co-existing. Capturing of radiation 
from one frame to another changes the frequency and the reference at rest but it does not 
change the physical propagation velocity of the radiation in the root frame. The reduction 
of momentum in equation (5.2.3:25) is a consequence of an increase in wavelength 
λk+1 = λk /(1–β[k+1]B(r)) which means reduction of the mass equivalence of radiation due to 
the motion of the receiver in the propagation frame k. The reduction of the momentum 
can also be interpreted as a reduction of velocity ck+1 = ck(1–β[k+1]B(r)) in the Bk+1 frame 
due to a kinematic component resulting from the motion of the receiver frame. 

When received by a receiver B at rest in frame k+1, the frequency observed is 
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where  
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Substituting equation (5.2.3:27) for λA[k](r) in equation (5.2.3:26), frequency fA(B) obtains 
the form 
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The frequency in equation (5.2.3:28) is the same as that obtained by applying equation 
(5.2.3:22), which was derived by regarding the source and receiver frame as moving ob-
jects in the (root) parent frame. 
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5.3 Localized energy objects 

5.3.1 Momentum of radiation from a moving emitter 

Emission from a point source 

Emission of electromagnetic energy from a point source can be described as a turn of 
the imaginary energy of the emitter into the energy of electromagnetic radiation propagat-
ing in a space direction. By combining equations (5.1.1:22) and (5.1.1:24), the momentum 
of electromagnetic radiation emitted by a dipole in one cycle at rest in a local frame, can 
be expressed as 
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λ
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N I h m c
c dA dA

A λ A
= = = p r r  (5.3.1:1) 

where the factors N and λ are the intensity and geometry factors of the emitter. The 
momentum vector integrated over all emission directions is zero, whereas the total sub-
stance of electromagnetic energy, the mass equivalence of a cycle of radiation, is equal to 
the mass equivalence of the electromagnetic energy of one oscillation cycle in the emitter 
(see equation (5.1.1:24)), Figure 5.3.1:1. 
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In general, momentum in the fourth dimension describes the integrated absolute value 
of the zero vector sum of momenta in space directions in a local frame.  

Emission from a plane emitter 

In a symmetric bidirectional plane emitter at rest, the vector sum of the momenta of 
radiation emitted in opposite directions is zero whereas the scalar sum of the momenta is 
equal to the scalar value of the momentum related the electromagnetic energy released by 
the transmitter 

 

Im 

Rex 

pEM 

pλ 
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Figure 5.3.1-1. The momentum pEM of the 
electromagnetic energy in an emitter at rest in 
the parent frame appears in the imaginary di-
rection. The momentum of the emitted wave 
has its momentum pλ in the direction of the 
emission in space. An emission event can be 
described as a turn of the imaginary momen-

tum by 90 into the momentum in space. 
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where  
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is the momentum of a cycle of electromagnetic energy being converted into a cycle of 
radiation at the emission by turning the momentum into space directions. 

When a plane emitter moves at velocity v = βc in the direction perpendicular to the 
emitter plane, the wavelength of radiation emitted in the direction of motion is reduced, 
and the wavelength of radiation emitted in the opposite direction is increased due to the 
Doppler effect. With reference to equations (5.2.3:3), (5.3.1:1), and (5.3.1:2), the corre-
sponding momenta of a cycle of radiation in each direction are 
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in the direction opposite to c, Figure 5.3.1-2.  

 
Figure 5.3.1-2. The rest momentum pEM(0) and the internal momentum pEM(I) of electromagnetic 
energy in a plane transmitter moving at velocity β in a parent frame. The momentum of plane 
waves emitted in the emitter frame (moving with the emitter) is the internal momentum of the 
emitter. In the direction of motion of the emitter, the total momentum of the electromagnetic 
energy, pnet(β), is formally the momentum related to the “relativistic mass” equivalence of the radia-
tion emitted.  
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In equations (5.3.1:5) and (5.3.1:6) mλ,rest(0) means the mass equivalence of radiation 
emitted by the emitter at rest in the parent frame  
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2 ½

λ rest λ rest
m m m = =  (5.3.1:7) 

and mλ,rest(β ) is the mass equivalence of radiation emitted in the emitter frame by the emit-
ter moving at velocity β in the parent frame 
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Multiplication of the numerator and denominator in equations (5.3.1:5) and (5.3.1:6) 
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By combining equations (5.3.1:9) and (5.3.1:10), the net momentum of radiation emit-
ted by a moving plane emitter can now be expressed as 
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The mass equivalence of electromagnetic radiation mλ(β) due to the motion of the emit-
ter in equation (5.3.1:11) has the form of the relativistic mass of any energy object with 

rest mass mλ(0) put into motion at velocity βc in space 

( )

( ) ( )00 02

2 2
Χ

1 1

λ

λλ β

m h λ
m N

β β
= =

− −
 (5.3.1:12) 

The additional mass equivalence Δmλ in (5.3.1:11) is the mass increase needed to put 
the emitter into motion (see Section 4.1.2). As shown by equation (5.3.1:5) the rest mass 
equivalence of the moving energy object is reduced by the motion — like in the case of 
mass objects moving in their parent frame — as 
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In the frame moving with the emitter the momenta of the opposite waves are  
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with net momentum 
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The net momentum is zero in the moving frame also when the emitter is moving in its 
parent frame. Like in the case of mass objects the state of rest within the moving frame is 
obtained against a reduction in the absolute values of the rest momenta. The sum of the 
absolute values of the opposite momenta can expressed as the rest momentum of the 
emitter in the imaginary direction 
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When β = 0, the emitter frame is indistinguishable from the parent frame and the rest 
momentum in the emitter frame and in the parent frame is 
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or with Iλ =1 as it is for an ideal quantum emitter for a single unit charge oscillation 
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In the emitter frame, the emission of electromagnetic radiation can be described as the 
turn of the rest momentum of the emitter in the imaginary direction into the momentum 
of radiation in space directions. 

5.3.2 Resonator as an energy object 

The conclusions drawn regarding the momenta of plane waves are of special interest 
when applied to a one-dimensional resonator with plane waves propagating in opposite 
directions. A resonator creates a closed energy object capturing the radiation into the 
frame of the emitter feeding the resonator. 

 As taught by classical wave mechanics, a resonant superposition of waves in opposite 
directions produces a standing wave  
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r
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λ

= =   (5.3.2:1) 

with nodes at r = nλ/2. Like the momenta of waves emitted in opposite directions by a 
plane emitter given in equation (5.3.1:16), the momenta in a resonator have a zero vector 
sum but a non-zero scalar sum 
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Figure 5.3.2-1. (a) An electromagnetic resonator can be studied as an energy object or closed ener-
gy system with rest mass equal to the sum of the mass equivalences of the waves in opposite direc-
tions.  

where pλ() = pλ,rest(β) is the sum of the absolute values of the momenta in opposite direc-
tions, which is the rest momentum of the electromagnetic energy in the resonator, Figure 
5.3.2-1.  

Due to the nature of the fourth dimension as the symmetry sum of vector quantities 
in space, the total momentum of a resonator can be described as momentum in the 
fourth dimension. Such a conclusion can also be drawn from the study of the central 
force effect in the fourth dimension due to motion at the velocity of light in space (see 
Section 4.1.8).  

When the resonator is in motion in the direction of its longitudinal axis, the sum of 
the momentums of the opposite waves observed in the parent frame is the wave carrying 
the momentum of the resonator (5.3.1:11)  
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where βc is the velocity of the resonator in its parent frame and mass mλ(β) means the mass 
equivalence of the electromagnetic energy in the resonator as an energy object with rest 
mass equivalence mλ(0). 

The momentum (5.3.2:3) of the moving resonator in the parent frame can be ex-
pressed as 
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where λ(β ) is the wavelength related to the net momentum of the resonator moving at ve-
locity βc in the local frame, Figure 5.3.2-2.  

In a resonator moving at velocity βc in the direction of the longitudinal axis the inter-
nal frequency fI(β) of radiation can be interpreted as the frequency of radiation with exter-
nal wavelength 
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Figure 5.3.2-2. The sum of the absolute values of the momenta within a resonator is described as 
the rest momentum in the imaginary direction. The net momentum of the resonator in the direc-
tion of the motion in the parent frame is the sum of the Doppler shifted front and back waves. 
The sum wave propagates at velocity βc in parallel with the resonator in the parent frame. 

propagating at velocity c(1–β) in the parent frame, or the frequency of radiation with the 
internal wavelength λI(β) propagating at velocity c in the frame moving with the resonator 
at velocity βc 
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where λI(0) is the internal wavelength of the resonator at rest in the local frame. 
The phase velocity c relevant to the internal wavelength λI and internal frequency fI is 

independent of the velocity of the resonator frame and equal to the local imaginary veloc-
ity of light 
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When studied as a closed energy system, momenta in opposite directions in a resona-
tor result in radiation pressure at the reflectors. In a physical resonator, the recoil due to 
the radiation pressure at the opposite ends of the resonator is compensated through a 
tension and an excited state in the chemical bonds between atoms in the resonator body.  
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A resonator as an energy frame, or energy object, comprises radiation as the carrier of 

the rest energy, and the resonator body defining the physical dimensions of the energy 
object, Figure 5.3.2-3.  

Waves carrying the opposite momenta of equation (5.3.2:2) in the resonator frame can 
be expressed in the form 
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resulting in a standing wave through superposition 

0 02 sin 2 cos2 2 sin cosI I I

I

r
A A π πf t A k r ω t

λ
= =  (5.3.2:9) 

with zero amplitude nodes at 

½ Ir nλ L= =   (5.3.2:10) 

Including the effect of all the parent frames, the wavelength and frequency of a reso-
nator are 
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and 
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1 1
n

i iδ β
i

f f δ β  (5.3.2:12) 

where λ0 and f0 are the wavelength and frequency of the emitter at rest in hypothetical 
homogeneous space (see Section 5.1.4 for derivation). 

With reference to equation (5.1.4:19), atomic dimensions are functions of the velocity 
of the atom in the local energy frame. Accordingly, the length of the resonator L in equa-
tion (5.3.2:10) is subject to “swelling” due to the velocity of the resonator in its parent 
frames. Thus 

2

0

0

1
n

i

i

L L β
=

 = −
   (5.3.2:13) 

where L0 is the length of the resonator at rest in hypothetical homogeneous space.  
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Figure 5.5.2-3. A resonator can be 
described as an energy object with 
the mass equivalence of the electro-
magnetic radiation in the standing 
wave. The radiation pressure inside 
the resonator results in a tension in 
the mechanical structure of the reso-
nator. 
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As shown by equations (5.3.2:11) and (5.3.2:13), the internal wavelengths and dimen-
sions of a resonator increase equally along with the velocity of the resonator. Accordingly, 
the resonance condition and the number of nodes in a standing wave in a resonator are 
independent of the velocity of the resonator in the local frame and also independent of 
the velocities of the local frame in all the parent frames. Substituting equations (5.3.2:11) 
and (5.3.2:13) into equation (5.3.2:10), the number of half-waves in a resonator can be 
expressed as 

( ) ( ) ( )
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I II β
i

i

β
L LL
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−

= = =

−




 (5.3.2:14) 

The resonance condition in equation (5.3.2:14) is independent of the direction of the 
resonator relative to its velocity in the local frame and in the parent frames. As shown by 
equations (5.3.2:11) and (5.3.2:12), the internal wavelength and the internal frequency are 
also independent of the direction of the resonator relative to its velocity in the parent 
frame.  

5.3.3 Momentum of spherical emitter 

In previous chapters, the momentum of radiation was studied in the case of plane 
waves from planar sources and in a one-dimensional resonator. The net momentum of 
radiation from a bidirectional planar emitter is zero when the emission direction is per-
pendicular to the motion of the emitter, and it has the form of the momentum of any 
mass object when the emission occurs in the direction of the motion.  

In the case of an isotropic spherical source like a stellar radiation source on a macro-
scopic scale, the momentum of radiation from a surface differential dA can be expressed 
as 

2 2

EM EM

2

1 12 sin sin
ˆ ˆ

4 1 cos 2 1 cos
φ φ

m c β m c βπr φ rdφ φ
d dφ

πr β φ β φ

− −
= =

− −
p r r   (5.3.3:1) 

 
Figure 5.3.3-1. (a) Calculation of the momentum of radiation emitted by an isotropic spherical 
source. (b) Calculation of momentum in the direction of velocity β. 
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where dA = 2πr 2 sinφ dφ is a spherical surface differential with its symmetry axis in the 
direction of velocity β, Figure 5.3.3-1.  

Due to the symmetry, only the component of momentum dp in the direction of β, 
dpβ = dp cosφ contributes to the total momentum, which is obtained by integration 

2

EM

0

1 sin cos
ˆ

2 1 cos

π

β β

m c β φ φ
dφ

β φ

−
=

−p r  (5.3.3:2) 

where β is the velocity of the emitter in the local frame. The integral in equation (5.3.3:2) 
cannot be solved in a closed form but in a wide range of β (0< β <0.85) is close to a linear 
function of β, Figure 5.3.3-2 

EM ˆ
2

β β

m βc
p r  (5.3.3:3) 

5.3.4 Mass object as a standing wave structure 

A mass object in the DU framework can be described as a standing wave structure or 
resonator. A mass object at rest in an energy frame in space is described as a resonator 
hosting a standing wave at the Compton wavelength, which is the wavelength equivalence 
of the rest mass of the object. As discussed in Section 5.3.2, in the case of electromagnet-
ic resonators, the momentum of a standing wave structure in space is zero due to the 
cancellation of the opposite momentums of the waves in the opposite directions, but ap-
pears as momentum in the fourth dimension just like the rest momentum of a mass ob-
ject. 

A standing wave structure for describing a mass object possesses complete symmetry 
in all space directions. Such a structure can be demonstrated with one-dimensional reso-
nator in any space direction, Figure 5.3.4-1. 

When a “mass wave resonator” is put into motion at velocity βc in space the rest wave 
number krest  is reduced [see equations (4.1.3:10) and (5.3.1:8)] 

( ) ( )
2 2

0 0
1 1

restrest β
mc β ћ k β= − = −p i i   (5.3.4:1) 

and the momentum in the direction of motion in space becomes (see equation (4.1.2:14))  
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pβ (5.3.3:3) Figure 5.3.3-2. The momentum 
of radiation emitted by an iso-
tropic spherical source accord-
ing to equations (5.3.3:2) and 
(5.3.3:3).  



Mass, mass objects and electromagnetic radiation 203 

 

 

( )

( )

0 0

ˆ 0
2 2

ˆ ˆ ˆ
1 1

rest

β

ћ kmv
βc ћ k βc

β β
= = =

− −
rp r r r   (5.3.4:2) 

which is equal to the net momentum, as the sum of the Doppler-shifted front wave and 
back wave of the opposite rest waves in a one-dimensional resonator, Figure 5.3.4-2 

 
Figure 5.3.4-2. A mass object moving at velocity βc in space has its rest momentum in the imagi-
nary direction and its momentum in space in the direction of motion. The momentum in space is 
the net momentum of the Doppler shifted front wave back wave observed in the frame where the 
object is moving at velocity βc. 
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Figure 5.3.4-1. A mass object at 
rest in space is described as a one-
dimensional resonator with mo-
mentum in the fourth dimension. 
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The resulting wave number k(β ) in (5.3.4:3) is the wave number equivalence of the rel-
ativistic mass as shown in the derivation in equations (5.3.1:9–11) and (5.3.2:3). A mes-
sage of equation (5.3.4:3) is that a moving object has the nature a mass wave moving at 
velocity βc in a local frame. 

5.3.5 The double slit experiment 

An important difference between the wave presentation of the momentum of a mass 
object in standard quantum mechanics and in the DU comes from the removal of c from 
the Planck constant discussed in Section 5.1.2. In standard quantum mechanics, the mo-
mentum of a mass object is expressed in terms of de Broglie wavelength λ = h/p. 

ˆ ˆ
dB

dB

h
ћk

λ
= =rp r r   (5.3.5:1) 

Equation (5.3.5:1) assumes implicitly that the propagation velocity of the de Broglie 
wave is the velocity of light, which is illustrated by replacing the Planck constant h with 
the intrinsic Planck constant h0 or ħ0 

0
ˆ

dBћ k c= rp r   (5.3.5:2) 

The mass wave with wave number k(β) in equation (5.3.4:3) creates the momentum of 
the object with mass m+Δm propagating at velocity βc. In the DU framework, the wave 
presentation of the momentum pr in (5.3.5:2) is expressed 
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dB β
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Figure 5.3.5-1. A mass object as a standing wave structure (drawn in the direction of the real axis). 
The momentum of the object moving at velocity βc is the external momentum as the sum of the 
Doppler shifted front and back waves, which can be described as the momentum of a wave front 
propagating in the local frame in parallel with the propagating mass object. The interference pat-
tern observed in the double slit experiment demonstrates the momentum as a wave front by re-
sulting in deflection of the propagation path observed as an interference pattern between wave 
fronts passing the two different slits. 
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which can be equally interpreted as the result of a wave with de Broglie wave number 
propagating at the velocity of light or a wave with wave number k(β) propagating at the 
velocity of the moving object. The wave number k(β) is related to the de Broglie wave-
length as 

( ) dBβ
k β k=   (5.3.5:4) 

The DU interpretation of the momentum of a moving mass object as the momentum 
of a wave front is of special interest for understanding the double slit experiment 69. Fig-
ure 5.3.5-1 illustrates the momentum of an object as a co-moving wave front in the vicini-
ty of the moving object. 

5.3.6 Planck units in the DU framework 

In the DU framework, where h0 = h/c, the Planck mass and the Planck distance obtain 
the forms 
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2
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Multiplication of (5.3.6:1) with (5.3.6:2) gives 

0
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h
m

r
=  (5.3.6:3) 

showing the Planck distance r0 as the wavelength equivalence of Planck mass 
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m
= =  (5.3.6:4) 

Equation (5.3.6:4) is of special interest as the basis for the buildup of elementary parti-
cles as sub-harmonics of the wavelength equivalence of Planck mass as suggested by Ari 
Lehto 70. 

In the DU framework, the ratio G/c0
2 can be expressed in terms of the mass equiva-

lence and the 4-radius of spherically closed space as  
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Substitution of (5.3.6:5) into (5.3.6:1) and (5.3.6:2) relates the Planck mass and the 
Planck distance to M” and R4 as 
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and 



206 The Dynamic Universe 

 

0
0 4

"

m
r R

M
=   (5.3.6:7) 

respectively. Each one of the equations shows that 

0 0

4"

m r
U

M R
= =   (5.3.6:8)  

where the common ratio is denoted as U. Substituting U back to (5.3.6:6) and (5.3.6:7) we 
get 

0 "m U M=    (5.3.6:9) 

0 4r U R=    (5.3.6:10) 

which shows that the Planck mass is related to the mass equivalence of whole space in 
the same way as the Planck distance is related to the 4-radius of space. 
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5.4 Propagation of electromagnetic radiation in local frames 

Dents in space around mass centers and the reduction of the velocity of light in the 
dents affect the propagation time and direction of light and radio signals passing a mass 
center. Prediction for the bending of light in the DU framework is essentially the same as 
they are in the framework of general relativity. The prediction for Shapiro delay in the 
DU is slightly different from that in general relativity. In the cases confirmed with meas-
urements, however, the predictions of the two theories are equal. 

5.4.1 Shapiro delay in a local gravitational frame 

The propagation of light near mass centers is affected both by the reduction of the ve-
locity of light and by the lengthening of the propagation path due to the geometry of the 
fourth dimension. And since the two factors work in the same direction, the traveling 
time of light increases when light passes a mass center in space. 

The propagation time of light from location A to location B in a gravitational frame 
can be generally expressed by the equation 

,

B B

A B
A A

dx
T dt

c
= =   (5.4.1:1) 

where the local velocity of light c and the radial component of the distance differential dx 
are functions of the distance from the local mass center in the gravitational frame studied, 
Figure 5.4.1-1. For studying the effect of the curvature of space and the associated change 
in the velocity of light, it is useful to express the propagation time in terms of a hypothet-
ical propagation time in hypothetical homogeneous space followed by a correction due to 
the curvature of local space and the associated change in the velocity of light. 
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The first term in (5.4.1:2) is the propagation time based on the flat space distance 
from A to B, and the velocity of light in the hypothetical homogeneous space of the local 
gravitational frame. The second term in (5.4.1:2) shows the increase of propagation time 
resulting from the increased distance due to the curvature of space between locations A 
and B, and the local velocity of light along the propagation path. For solving the second 
term we first write it into form 
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where  

( ) 0Δ δdx dx dx= −  (5.4.1:4) 
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Figure 5.4.1-1. The light path AB from location A to location B follows the shape of the dent in 
space as a geodesic line in the gravitational frame of mass center M. Point A is at flat space dis-
tance r0δA and point B is at flat space distance r0δB from mass center M. Point AB is the flat space 
projection of point A on the flat space plane crossing point B. Line ABB is the distance between A 
and B as it would be without the dent. The velocity of light in the dent is reduced in proportion to 
1/r0δ . I.e. the velocity of light at A is higher than the velocity of light at B. The distance ABA is the 
projection of path AB on the flat space plane.  

and 
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Substitution of (5.4.1:4) and (5.4.1:5) into (5.4.1:3) gives 
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To solve the distance term in the integrand in equation (5.4.1:6), the distance differen-
tial dx in the actual propagation path in tilted space is expressed  

2 2

0δdx dx dz= +   (5.4.1:7) 

where dz is the differential in the direction of the Im0δ perpendicular to the flat space 
plane 

0sin tanδdz dr ψ dr ψ= =   (5.4.1:8) 

where dr0δ is the flat space projection of distance differential dr, Figure 5.4.1-2(a). 
Angle α is the angle between the flat space projection of the path and the tangential di-

rection perpendicular to radius r0δ which allows the expression of dr0δ as (Fig. 5.4.1-2(b,c)) 

0 0 sinδ δdr dx α=   (5.4.1:9) 

Substitution of (5.4.1:4) into (5.4.1:3) gives   
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Figure 5.4.1-2. 

 
 

(a) Effect of the curvature of space on the 
distance differential dr.  There is no lengthen-
ing in the distance differential dsφ in the direc-
tion perpendicular to the radius. 

 
 

 
 
 
 
 
 

(b) Distance differential dx in the direction of 
a light beam at an angle α to the tangential 

direction on the flat space plane  

 
 
 

 
 
 
 

(c) Notation of distances in the analysis of the 
signal delay between points A and B in a grav-
itational frame around mass M. Distances 
x0δ(A) and x0δ(B) are the flat space distances 
from A and B to point x = 0, which is the 
shortest distance between line AB and mass 
center M. 
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Assuming ψ ≪1 which means that distance r0δ ≫ rc and cosψ   1, the cosine term can 
be approximated as  
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and (5.4.1:10) becomes 
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Substitution of (5.4.1:12) and into (5.4.1:6) gives  
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where the last form is obtained by neglecting the δ 2sin2α term (δ ≪1). 
The distance differential dx0δ in (5.4.1:13) can be expressed in terms of r0δ and the an-

gle differential dα, Fig. 5.4.1-2(c) 
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Substitution of (5.4.1:14) for dx0δ and (4.1.1:30) for δ in (5.4.1:13) results 
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  (5.4.1:15) 

where the velocity of light is cB  c0δ . From equation (5.4.1:14) we get 
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where d0δ  d is the shortest distance between M and the light propagation path (Fig. 
5.4.1-2(c)). Substitution of (5.4.1:16) into the first integral in (5.4.1:15) results in 
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The algebraic form of sin α is (Fig. 5.4.1-2(c)) 
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=    (5.4.1:18) 

which allows the expression of (5.4.1:17) in the form 
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The last term, which is missing from the corresponding GR prediction, is due to the 
fact that distance is increased only in the radial direction, the tangential component in the 
light path is unaffected by the dent in space. 

Equation (5.4.1:19) applies for xA≥0 and xB>0. When d = 0, line AB passes through 
M and rA = xA and rB = xB, i.e. the propagation path is in the radial direction, and since 

c0δ  c, equation (5.4.1:19) obtains the form 
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which is identical with the corresponding prediction in general relativity (because there is 
no tangential component in the propagation path). For xA<0 we apply equation (5.4.1:19) 
separately from 0 to xB and from –xA to 0 (Figure 5.4.1-3) 
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or 
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  (5.4.1:22) 

For cosmological observations, it is convenient to express equation (5.4.1:22) in terms 
of angles βA and βB as illustrated in Figure 5.4.1-3 
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  (5.4.1:23) 

Substitution of (5.4.1:23) for xA, xB, and d in (5.4.1:22) gives 
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− −   

  
= − +    

  (5.4.1:24) 
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Equations (5.4.1:19–24) give the Shapiro delay in the DU framework. In GR frame-

work Shapiro delay is expressed without the last term in parenthesis, which comes from 
the fact that the tangential component in the light path is not subject to lengthening.  

When xA = 0, then rA = d. If, further, rB ≫ d then xB  rB, and equation (5.4.1:19) ob-
tains the form 

, 3

2
Δ 2ln 1B

A B

rGM
T

c d

  
= −    

 (5.4.1:25) 

When DA≫d and DB≫d are at different directions from M the total signal delay given 
by equation (5.4.1:21) reduces to  

1, 2 3 2

42
Δ ln 1A B

D D

D DGM
T

c d

  
= −    

 (5.4.1:26) 

(see Figure 5.4.1-4).  
Equation (5.4.1:26) is applicable in cases like the experiments with Mariner 6 and 7 

spacecrafts (see Section 7.3.4).  

 
Figure 5.4.1-4. Distances DA and DB in equation (5.4.1:25) for calculation of the delay of a signal 
traveling from A to B. The signal passes mass center M at distance d. 

A DA DB B 

M 
d 

Figure 5.4.1-3. Calculation of ΔT for 
light propagation from point A to 
point B when the light path passes 
the shortest distance at x = 0.  d 
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5.4.2 Shapiro delay in general relativity and in the DU 

The prediction for Shapiro delay according to the general theory of relativity is given 
in the form 

 GR: 

, 3

3 3

2
Δ ln

ln ln

B B
A B

A A

B B B B

A A A Apath time

x rGM
T

c x r

x r x rGM GM

c x r c x r

 +
 

+ 

   + +
   

+ +   

=

= +

  (5.4.2:1) 

which is equal to the first term of the Shapiro delay in equation (5.4.1:19). The GR pre-
diction comes from two equal effects: the lengthening of the path, and the gravitational 
time dilation as demonstrated on the second line of equation (5.4.2:1). In the DU frame-
work, the two effects on the Shapiro delay are different; the effect of the velocity of light 
(corresponding to gravitational time dilation in GR) affects equally the radial and tangen-
tial components of the propagation path. The lengthening of the path due to the curva-
ture of space, however, has an effect only in the radial direction. As the counterpart of 
the second line in the GR equation (5.4.2:1), the two factors of the Shapiro delay in the 
DU framework are 

DU: 

( )

( )

, 3
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B B
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x r x xGM
T
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= − −    
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 +
=  

+ 

  (5.4.2:2) 

The velocity term in the DU prediction is identical to the time dilation term in the GR 
prediction, but the lengthening of the path in the DU prediction takes into account the 
fact that the curvature of space occurs only in the radial component of the path, which 
results in the second term in the ΔtA,B(path) in (5.4.2:2).  

The difference between the GR prediction and DU prediction disappears when there 
is no tangential component in the propagation path, i.e. propagation occurs in the radial 
direction — in a direction towards or from the local mass center resulting in the curva-
ture (xA = rA and xB = rB ). Accordingly, the DU prediction in (5.4.1:20) is equal to the 
corresponding prediction in the GR. 

The GR equation corresponding to the DU prediction (5.4.1:26) is 

1 2
1, 2 3 2

42
Δ lnD D

D DGM
T

c d

 
=   

  (5.4.2:3) 

5.4.3 Bending of light 

Derivation of equation (5.4.1:25) results in 

( )
3

Δ 4t GM

d c d


= −


  (5.4.3:1) 
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Figure 5.4.3-1. A light ray passing a mass center in space is bent due to a reduced velocity and in-
creased distance close to a mass center.  

which gives the difference in the propagation delay in a difference in the shortest distance 
d to mass center M a light ray is passing, Figure 5.4.3-1. The extra distance the outer side 

of the ray travels in Δt is ( )ΔD c t =   which can be expressed as arc D   

( )
( )Δ

Δ
t

D ψ d c t ψ c
d


 =   =    = 


  (5.4.3:2) 

Substitution of (5.4.3:1) into (5.4.3:2) gives the bending angle ψ towards the mass cen-
ter   

2

4GM
ψ

c d
=   (5.4.3:3) 

The result is the same as the corresponding prediction derived from the general theory 
of relativity. 

Both the Shapiro delay in (5.4.1:26) and the bending of light in (5.4.3:3) assume that 
the closest distance from the light path to the mass center is much larger that the critical 
radius.  

5.4.4 Measurement of the Shapiro delay 

Equation (5.4.1:2) for the total propagation time is written as the sum of the “flat 
space propagation time” T(A,B)0δ, and the Shapiro correction ΔTA,B due to the curvature of 
space  

( ), ,, 0
ΔA B A BA B δ

T T T= +   (5.4.4:1) 

In principle, the flat space propagation time T(A,B)0δ in (5.4.4:1) is based on the velocity 
of light in the apparent homogeneous space of the local gravitational frame, c0δ, which 
relates to the velocity of light at the receiver’s location, cB as 

( )
0

1

B
δ

B

c
c

δ
=

−
  (5.4.4:2) 

In present practice, the velocity of light is fixed to the value measured on the Earth 
which is lower than the velocity of light in the apparent homogeneous space of the Earth 
gravitational frame or the solar gravitational frame. Also, the unit of time is fixed to the 

M 

d 

d

ψ
D

ψ
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characteristic frequency of a Ce-clock on the Earth geoid. The frequency of a clock in the 
apparent homogeneous space of the Earth gravitational frame is  

( ) ( )
0

1 1 1

Earth Earth
δ

Poles Equator Equator

f f
f

δ δ β
= 

− − −
  (5.4.4:3) 

The two expressions in (5.4.4:3) are essentially equal due to the properties of the Earth 
geoid (See Section 7.5). The frequency of a clock is essentially the same at different loca-
tions on the Earth. The velocity of light, however, is slightly higher at low latitudes (closer 
to the equator) because of the radius of the Earth is higher at the equator than at the 
poles. At the poles, the frequency of an Earth clock and the local velocity of light can be 
related to the frequency of a hypothetical clock moving at velocity βEarth in apparent ho-
mogeneous space and the velocity of light in apparent homogeneous space as 

( )
0

0

1

1

δ B B B

δ Poles B B

f f δ f

c δ c c

−
= =

−
  (5.4.4:4) 

The reading of a clock in apparent homogeneous space for the propagation time of a 
fixed distance XAB in apparent homogeneous space is 

( ) 00

0

ΔAB
AB δAB

δ

X
N T f

c

 
= + 

 
  (5.4.4:5) 

Assuming the local velocity of light for the light propagation the reading of a clock at 
North or South Pole for the same distance XAB becomes 

( ) ( )0
ΔAB

B X BAB B AB

B

X
N f T f N

c
= +    (5.4.4:6) 

which means that for a local observer the reading of the clock used for the measurement 
of the propagation is essentially independent of the observer’s gravitational state in local 
frame.  

A famous experiment of the Shapiro delay was performed with Mariner 6 and 7 
spacecrafts on their mission to the planet Mars. In the Mariner 6 and 7 experiments, the 
signal delay was studied by comparing the delays at different passing distances d between 
the signal path and the Sun. The observed quantity is the difference in delays at different 
passing distances d in (5.4.1:26). As a result, the effect of the constant –1 in (5.4.1:26) is 
ignored and the experiment does not differentiate between the GR and DU predictions 
(see Section 7.3.4). 

In the illustration of Figure 5.4.4-1, transmitter A is a satellite in its orbit and receiver 
B is on the Earth. The velocity of light at the altitude of the satellite is higher than the 
velocity of light on the Earth.  

In satellite communication, the signal path follows the shape of actual space, which 
means that in calculating the Shapiro effect we only need to take into account the change 
in the velocity of light between the satellite and the Earth station – i.e. the second term in 
equation (5.4.2:2). At a satellite’s altitude, the velocity of light is higher than the velocity 
of light on the Earth. Accordingly, compared to transmission time based on the velocity 
of light on the Earth, the measured transmission time is shortened by factor 
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A B velocity
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hGM
T

c r

 
  

 
  (5.4.4:7) 

For GPS satellites the altitude h is about 20,000 km. Applying the Earth mass M 

61024, and Earth radius rEarth  6,400 km, the Shapiro effect is about 0.03 ns, which corre-
sponds to about 9 mm in distance; i.e., the actual distance to the satellite is 9 mm longer 
than that calculated from the velocity of light on the Earth. 

In the case of Earth satellites, the effect of the curvature of space is too small to be 
detected — about 0.06 ns (max) corresponding to about 17 mm in the case of GPS satel-
lite signals. 

The reduced wavelength of radiation in the local gravitational frame is observed as a 
“gravitational blueshift”. The deformation of the wave front is also observed as gravita-
tional lensing as a consequence of the bent propagation direction. 

5.4.5 Effects of moving receiver and moving source 

The propagation path of light or a radio signal from source A to receiver B moving in 
the same frame can be expressed as 

( ) ( )1 0AB B t A t
= −r r r  (5.4.5:1) 

where rA(t0) is the location vector of the source in the propagation frame at the time the 
radiation is sent and rB(t1) is the location vector of the receiver at the time of the arrival of 
the signal. The propagation time of a signal from A to B is 

Figure 5.4.4-1. The light path r→ 
from location A at distance rA from 
mass center M to location B on the 
surface of the mass center M. The 
upper figure illustrates the light path 
following the shape of the dent in 
space in the gravitational frame of 
mass center M. The path is subject 
to lengthening due to the “extra” 
distance in the direction of the Im0δ 
axis. The lower figure is “top view” 
giving the projection of the path on 
the apparent homogeneous space 
plane. 
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( )1
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1
B t

AB p

δA t

T d
c

=  r  (5.4.5:2) 

where drp is the differential of the signal path rAB. Ignoring the gravitational variation of 
the velocity of light along the propagation path, equation (5.4.5:2) can be simplified into 
the form 

( ) ( ) ( )
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ˆ ˆ ˆ

AB B AB ABAB t AB tAB
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c c c

 +   
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 (5.4.5:3) 

where c is the average local velocity of light along the propagation path and βB(r) is the ve-
locity of the receiver in the direction of the signal received. 

The first term in equation (5.4.5:3) gives the propagation time related to the path as it 
is when the signal is emitted and the second term is a correction due to the motion of the 
receiver during the propagation. Equation (5.4.5:3) can be solved into the form 

( )

( )( )
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r r
 (5.4.5:4) 

As shown by equation (5.4.5:4), the motion of the receiver has a first order effect on 
the propagation time between a source and a receiver in the local gravitational frame.  

The length of the propagation path from rA(t0) to rB(t1) is  
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0
ˆ

1

ABAB t
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
= =

−
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r r
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which is referred to as the transmission distance from A to B. 
The effect of the rotation of the Earth on the transmission time and distance of sig-

nals sent from Earth satellites is often referred to as Sagnac effect (see Section 7.3.2).  
The frequency and wavelength of the radiation received by a moving receiver are sub-

ject to Doppler shift as discussed in Section 5.2.3. In the case of a source A at rest, with 
reference to equation (5.2.3:15), the wavelength observed at B moving at velocity βB(r) in 
the direction of rAB is 
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( )

( )
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B
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  (5.4.5:6) 

and the corresponding cycle time T = 1/f  is  
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  (5.4.5:7) 

which means that the observed phase velocity, c, of the radiation received by the moving 
receiver is independent of the velocity of the receiver, and equal to the phase velocity of 
the radiation observed by an observer at rest 

( )

( )
( ) ( ) ( ) ( )0 0

A B

A B A B A A

A B

λ
c λ f λ f

T
= = =   (5.4.5:8) 
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In the analysis above, the radiation source was assumed to stay at rest in the propaga-
tion frame. In such a situation, the distance rAB(t0) changes with time as  

( ) ( ) ( ) ( )0 0 ,0
1

t

AB AB t B t
t β c dt = +

   r
r r   (5.4.5:9) 

and, accordingly, the optical image of the radiation source is seen at the transmission dis-
tance  
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When measured in observed wavelengths, the transmission distance is 
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When the velocity βB(r) = β occurs in the direction of ˆ
ABr , equation (5.4.5:11) obtains 

the form 
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N β c t t
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where LAB(0) is the physical distance from the source to the receiver at t = 0 

( ) ( ) ( )0 0 0
ˆ

ABAB AB t AB t
L =  =r r r   (5.4.5:13) 

5.4.6 The effect of a dielectric propagation medium   

The velocity of light propagating in a non-magnetic medium with relative permittivity 

εr > 1, and relative permeability μr  1 is expressed  

0 0

1
n

r r

c c
c

nμ ε ε ε
= = =   (5.4.6:1) 

where = rn ε  is referred to as the refractive index. The effect of relative permittivity is 

understood as polarization of the transmitting medium due to the electric field of the 
propagating electromagnetic wave. In the DU framework, the effect of polarization can 
be expressed as buildup of the imaginary component of the momentum of the propagat-
ing wave. In a vacuum or in air the momentum of a cycle of electromagnetic radiation is 
expressed  

0
0

ћ
N

λ
=p c  (5.4.6:2) 

where N 2 is the intensity factor. When entering into a medium with refractive index n >1, 
the momentum is reduced due to reflection resulting in radiation pressure and a reduction 
in the intensity of radiation. The transmitted share of the momentum is 
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p  (5.4.6:3) 

The effect of polarization in the transmitting medium is described as a buildup of the 
imaginary component to the momentum. The real component of the momentum is char-
acterized by the reduced propagation velocity, c’ = c/n 

  0Re T T

ћ c
p N

λ n
=  (5.4.6:4) 

Conservation of the absolute value of the momentum requires the imaginary compo-
nent  

  0
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ћ
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= −  (5.4.6:5) 

i.e. the complex momentum is expressed as  
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see Figure 5.4.6-1(a). 
When the transmitting medium is in motion at velocity β = v/c in the direction of the 

propagation of the radiation, the real component of the momentum of the radiation in 
the medium is increased and the total momentum obtains the form 
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p p N c
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 
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p  (5.4.6:7) 

Motion of the transmission medium, in the direction of the real axis, results in an in-
crease in the real component of the momentum by  

 
Figure 5.4.6-1. (a) Buildup of the imaginary component in the momentum of electromagnetic radi-
ation in a transmitting medium with refractive index n >1. The velocity related to the real compo-
nent of the radiation is c’ =c/n. (b) The effect of the velocity of the transmitting medium is an addi-
tion, Δpβ , to the real component of the radiation. The effect of the increased momentum on the 
velocity of the radiation in the local frame, the frame where the medium is moving, is denoted as 
cβ’ in the picture. 
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resulting in total momentum 

( )
0

22

1 1
i 1

1
TT β

ћ β
N c

λ n nβ

  
  = + + −
  −  

p  (5.4.6:9) 

i.e., the modulus of the complex momentum is (see Figure 5.4.6-1(b)) 
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Relative to the local frame where the polarizing medium is moving, the velocity of the 
radiation, cβ’, due to the motion of the medium is increased as 
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 (5.4.6:11) 

Equation (5.4.6:11) is the DU replacement for the classical Fresnel equation  
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and its replacement based on the special theory of relativity 
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 (5.4.6:13) 

A comparison of equations (5.4.6:10), (5.4.6:11), and (5.4.6:12) is presented in Figure 

5.4.6-2. As shown by the comparison, for β ≪1, the predictions given by all three equa-
tions are essentially equal. When the velocity of the transmitting medium approaches the 
velocity of light, the Fresnel equation (5.4.6:12) predicts radiation velocities exceeding c. 
The formula for adding velocities in special relativity in equation (5.4.6:13) corrects the 
Fresnel predictions by forcing all curves, independent of the refractive index n, to meet at 
c when the velocity of the transmitting medium is equal to the velocity of light. The DU 
prediction is essentially equal to the SR prediction although the physical basis, derivation 
and the mathematical form of the prediction are different.  

According to the DU analysis, the effect of the refractive index on the velocity of light 
relies on the energy stored by polarization in a dielectric medium with εr > 1. The polari-
zation energy can be expressed as a buildup of an imaginary component to the energy and 
momentum of the electromagnetic radiation propagating in the medium. Like Coulomb 
energy, the energy stored by polarization is reduced by the velocity of the polarizing me-
dium, which means that the effective refractive index is reduced with an increasing veloci-
ty of the medium.  
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5.5 Propagation of light from stellar objects 

5.5.1 Frame to frame transmission 

The transmission time of electromagnetic radiation within a gravitational frame was 
given in equation (5.4.5:4). As in the derivation of the Doppler effect, the effect of nested 
frames on the transmission time can be calculated by regarding sub-frames as objects in 
the root parent frame. Accordingly, equation (5.4.5:4) can be written in the form 

( ) ( )

( )

  ( )( )

0

0 1

1

ˆ

1

ABAB t

ABA t B t m

k j B
j k

T T

c β
→

= +


= =
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  (5.5.1:1) 

where frame k is the root parent frame common to the source and the receiver frames. 
With reference to equation (5.2.3:18), the denominator in equation (5.5.1:1) can be inter-
preted as the kinematic velocity of light in the receiver frame 
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Applying the kinematic velocity of light, the signal time can be expressed in the re-
ceiver frame as 
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The kinematic velocity of the signal in the source frame can be related to the velocity 
of light in the root frame as 
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Dividing equation (5.5.1:2) by equation (5.5.1:4) relates the kinematic velocity of light 
in the receiver to the kinematic velocity of light in the source as 
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 (5.5.1:5) 

Substitution of equation (5.5.1:5) for c'B in equation (5.5.1:3) gives the signal time in 
terms of the kinematic velocity of light in the source frame as 
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The propagation of electromagnetic radiation from one energy frame to another can 
be understood as propagation in the root parent frame common to both the source and 
the receiver. 

5.5.2 Gravitational lensing and momentum of radiation 

Due to the local tilting of space, the velocity of light is reduced and the transmission 
distance is increased near mass centers. As a result, the wave front of a plane wave is 
modified due to a higher delay close to the mass center as given in equations (5.4.1:19–
24), Figure 5.5.2-1. 

The reduction of the propagation velocity near a mass center is associated with a re-
duction of the wavelength. This reduction, which conserves the frequency and the mo-
mentum of the propagating radiation, can be expressed as 
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Figure 5.5.2-1. When radiation from a distant object passes a gravitational center, the wave front is 
distorted due to the lower velocity of light close to the center. As required by the conservation of 
the momentum in the passing radiation, the wavelength is observed reduced near the mass center. 
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5.5.3 Transversal velocity of the source and receiver 

An electromagnetic wave is described as an energy object capable of carrying momen-
tum in the direction of propagation (the direction of the Poynting vector). Motion of an 
emitter perpendicular to the emission direction of a plane wave does not contribute to 
the momentum of the wave emitted but results in “sliding the tail” of the transmitted 

beam in that direction. The velocity β⊥ of the emitter results in a tilting angle in the ap-
parent propagation direction, Figure 5.5.3-1(a) 
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v
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⊥
⊥= =  (5.5.3:1) 

At a fixed distance, L, in the actual propagation direction from the emitter, the phase 
of the wave is independent of the direction of the apparent propagation direction, Figure 
5.5.3-1(b) 
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The effect of a transversal motion of the receiver results in an apparent tilting of the 
direction of the radiation towards the motion of the receiver. The phenomenon is re-
ferred to as aberration. The aberration angle is formally identical to the apparent tilting of 
the emitted beam in equation (5.5.3:1) 
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The aberration angle does not contribute to the momentum of the incoming beam, 
Figure 5.5.3-2. 

 
Figure 5.5.3-1. (a) Motion of a transmitter perpendicular to the emitted beam does not contribute 
to the momentum of the radiation but results in an apparent displacement of the propagation di-
rection. (b) The phase of the wave at distance L in the actual propagation direction is independent 
of the apparent direction. 
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Figure 5.5.3-2. The aberration of light re-

ceived by a receiver moving at velocity β⊥ 
perpendicular to the momentum of radia-
tion received.  

 

 

 
Figure 5.5.3-3. Propagation of a plane wave 
beam perpendicular to the velocity of the 
transmitter–receiver frame. In the Earth 

gravitational frame, at about 40 latitude, for 
an optical axis of 1 meter in the south-north 

direction, the offset of the beam, r⊥, is about 
1 μm. This sets the lower limit for the width 
of a beam to be observed in a system where 
the beam is aligned in the direction of the 
optical axis perpendicular to the motion of 
the source–receiver frame. 

 
When both source and receiver move at the same velocity perpendicular to the radia-

tion transferred, a displacement of the receiver is needed in order for the full width of the 
transmitted beam to be received. The offset distance is  

tanr r ψ β L⊥ ⊥= =  (5.5.3:4) 

where L is the physical distance from the source to the receiver in the frame moving at 

velocity β⊥ = v⊥/c perpendicular to the momentum of the beam in the propagation frame, 
Figure 5.5.3-3. 

As is obvious from equation (5.5.3:2), the propagation time of a wave front is not af-
fected by the motion of a frame perpendicular to the momentum of the radiation. The 
propagation time for distance L is 
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Radiation emitted by sources at cosmological distances can be regarded as plane wave 
fronts entering the solar gravitational frame and the Earth gravitational frame. Each 
frame encountered by the radiation is in a position of a receiver relative to the incoming 
wave front. The total aberration due to the transverse velocity of each frame relative to 
the propagation frame of radiation (the root parent frame of the source and the receiver) 
can be expressed, Figure 5.5.3-4  

arctan i

i

ψ β ⊥=   (5.5.3:6) 

On the Earth the motion of the observatory with the rotation of the Earth results in a 

daily changing component (diurnal aberration) of the total aberration (ψEarthRot(max)  0.3"). 
The orbital motion of the Earth gives a maximum contribution to the aberration of about 

ψEarthOrb(max)  20.4”, which is referred to as the annual aberration. The maximum aberra-
tion due to the motion of the solar system in the Milky Way is about ten times the annual 
aberration. It is not, however, observable due to the very long orbital period of the solar 
system in the Milky Way. Aberration is a purely kinematic effect without any energy ex-
change between the observer and radiation received.  

 
Figure 5.5.3-4. Radiation received in a local frame moving perpendicular to the radiation. Motions 
of the local frame and the parent frames result in aberration of the observation angle. Due to the 
kinematic nature of the aberration, the velocity of the observer in a local frame and the velocity of 
the local frame and the parent frames account for the total aberration. 
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5.6 The development of the lengths of a year, month and day 

5.6.1 Earth to Moon distance 

Effect of the expansion of space on the Earth to Moon distance 

As shown in Section 4.2.6, the orbital radii of stellar and planetary systems are subject 
to an increase in proportion to the increase of the R4 radius due to the expansion of space 

4
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= =   (5.6.1:1) 

where t is the time from the singularity of space and Δt is the observation interval as giv-
en in equation (3.3.3:11). According to equations (3.3.3:10) and (5.1.4:15), the velocity of 
light and the ticking frequencies of atomic clocks decrease as  
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The signal transmission time from the Earth to the Moon increases as 
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and the time observed, the number of ticks of the atomic clock during the transmission 
time, is 
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That is, the observed increase in transmission time gives, directly, the actual increase 
of the Earth to Moon distance. In one year, according to equation (5.6.1:4), the increase 
in the Earth to Moon distance due to the expansion of space is 
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 (5.6.1:5) 

which is about 74% of the increase, Δrobs = 3.82  0.007 cm/year, observed in the Lunar 
Laser Ranging program 71. In the equation, the estimated time from the singularity, 

t = 9.3 109 years, corresponds to the Hubble constant H0 = 70 [(km/s)/Mpc]. The in-
crease of the center to center distance given by equation (5.6.1:5) applies as such to the 
surface to surface distance because the radii of the Earth and the Moon are not subject to 
an increase due to the expansion of space. Another effect resulting in an increase of the 
Earth to Moon distance is the tidal system, which is assumed to be responsible for a dif-
ference of 1 cm/year between the observed value Δrobs and the prediction of equation 
(5.6.1:5). 
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 Annual perturbation of the Earth to Moon distance 

In the Lunar Laser Ranging space program, the distance between the Earth and the 
Moon has been measured with high accuracy (up to a few centimeters) since 1970’s 72. 
The measurement is based on the two-way transmission time of a light pulse from the 
Earth to a reflector on the Moon and back to the Earth.  

The distance between the Earth and the Moon is subject to many perturbations such 
as tides, the radiation pressure of the Sun, and so on. A perturbation of special interest is 
related to the eccentricity of the Earth’s orbit around the Sun. The orbital velocity of the 
Earth is highest at perihelion point, resulting in a slower ticking frequency of the clock 
measuring the two-way time signal used for the distance measurement. Further, the gravi-
tational potential of the Earth in the Sun’s gravitational frame is at minimum at the peri-
helion, which further slows down the ticking frequency of the clock. Likewise, the veloci-
ty of light used in the distance measurement is at minimum in the minimum gravitational 
potential in the Sun frame. 

Owing to the energy balances in the gravitational frames of the Sun and the Earth, the 
Earth to Moon distance achieves its maximum when the Earth is at perihelion in its plan-
etary orbit. At perihelion, due to the maximum orbital velocity of the Earth–Moon sys-
tem, the radii of both the Earth and the Moon, as well as the dimensions of all material 
objects with them, are at the maximum.  

According to equation (5.2.1:7), the frequencies of atomic clocks on the Earth depend 
on the orbital velocity and the gravitational state as 
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The change in kinetic energy is equal to the change in gravitational energy because the 
energy of motion gained is equal to the energy of gravitation released. With reference to 
equation (5.2.1:8) we can express equation (5.6.1:6) as 
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where Δr is the increase of the orbital radius of the Earth. 
The change in the velocity of light, Δc, on the Earth due to the change in the distance 

to the Sun, Δc, can be determined from equation (4.1.10:2) as 
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corresponding to a relative change 

2

ΔΔ Sung rc

c c
  (5.6.1:9) 

As shown in Section 4.2.7, the radius of a local rotational system is increased when the 
system is taken closer to the central mass of its parent gravitational frame. According to 
equation (4.2.7:7), the decrease of the Earth to Moon (center to center) distance due to 
the increase of the Earth to Sun distance is 
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The distance between the Earth and the Moon is measured from the surface of the 
Earth to the surface of the Moon. To obtain the center to center distance, the radii of the 
Earth and the Moon must be added. Because the radii of atoms change with the rest mass 
of electrons, the dimensions of all solid objects and, accordingly, the radii of the Earth 
and Moon change in accordance with equation (5.1.4:19) as 
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which means that the relative change in the radii of the Earth and Moon is equal to the 
relative change in the center to center distance given in equation (5.6.1:10). Combining 
equations (5.6.1:10) and (5.6.1:11), the prediction for the measured distance becomes 
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The wavelength of light or electromagnetic radiation emitted by an object on the 
Earth is changed due to the change in the frequency emitted as shown in equation 
(5.6.1:7) and to the change in the velocity of light given in equation (5.6.1:9), 
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As shown by equations (5.6.1:12) and (5.6.1:13), the wavelength of the electromagnet-
ic radiation emitted by an object on the Earth and the distances to the Moon and satel-
lites change proportionally to the change in the distance from the Earth to the Sun. Ac-
cordingly, a hypothetical interferometric measurement of the distance from the Earth to 
the Moon gives an unchanging result in the course of the year. 

The traveling time of light from the Earth to the Moon changes in the course of the 
year due to two factors: the change in the velocity of light and the change in the distance. 
The two factors change in the same direction and are equal in quantity. With reference to 
equations (5.6.1:9) and (5.6.1:12) we get 
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The relative change of the propagation time of light or a radio signal is opposite to the 
relative change of the ticking frequency of an atomic clock given in equation (5.6.1:7). 

The time interval observed, the count of cycles of an atomic clock during the traveling 
time of light or a radio signal from the Earth to the Moon, is 

clockn f T=  (5.6.1:15) 

Substituting equations (5.6.1:7) and (5.6.1:14) into equation (5.6.1:15) we obtain the 
change of the count with the change of distance from the Earth to the Sun, 
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which means that the distance from the Earth to the Moon appears to be unaffected by 
the eccentricity of the planetary orbit when measured with the transmission time of a 
light signal as done in the Apollo program.  

The average radius of the Earth planetary orbit is about r  150 106 km. The eccen-

tricity of the orbit is e  0.0167 resulting in a Δr  5 106 km difference between the or-
bital radii in the perihelion and aphelion points. The numerical value of the gravitational 

acceleration due to the Sun at the Earth planetary orbit is about gSun = 5.9 10–3 [m/s], 
which means that, according to equation (5.6.1:11), the annual variation of the Earth to 
Moon distance due to the eccentricity of the Earth’s orbit is 
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where the minus sign means that the Earth to Moon distance decreases when the Earth–
Moon system advances from the perihelion to aphelion in the Earth planetary orbit, i.e. 
the Earth to Moon distance is at minimum when the Sun to Earth distance is at maxi-
mum. As shown by equation (5.6.1:16), due to the counterbalancing changes in the clock 
frequency and the velocity of light, the change in the Earth to Moon distance given in 
equation (5.6.1:17) is not detectable with the two-way signal time measurement used in 
the Lunar Laser Ranging program. 

The decrease of the Earth to Moon distance at aphelion results in a perturbation in 
the angular momentum of the Earth–Moon system, which is counterbalanced by an in-
crease in the angular velocity of the Earth and, accordingly, a reduction in the length of a 
day. The resulting annual perturbation in the length of the day is about 0.08 ms. The 
maximum length of the day, relative to an atomic clock on the Earth, occurs when the 
Earth to Moon distance is at maximum at the Earth perihelion in January.  

The observed annual perturbation of the length of the day, resulting from meteorolog-
ical and other effects, is about 2 ms/year (in phase with the 0.08 ms/year due to the an-
nual fluctuation in the Earth to Moon distance). 

5.6.2 Development of rotational and orbital velocities 

As a consequence of the balance between the energies of motion and gravitation (δ 
and β in local energy frames are conserved), the orbital radii of stellar systems increase in 
proportion to the expansion of space. The increase of the radii is associated with a de-
crease of the orbital velocities in proportion to the degradation of the velocity of light.  

The Earth draws away from the Sun at the rate 
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which, at present, means about 11 meters per year [see equation (3.3.3:11]. 
The orbital velocity decreases at the rate 
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[see equation (3.3.3:10)]. The orbiting time, i.e. the length of a year, increases as 
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which means that the present increase in the length of a year (in absolute time) is 
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Likewise, the ticking frequencies of clocks decrease in proportion to the degradation 
of the velocity of light. Accordingly, the increase in the year observable with clocks on 
the Earth is 
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Because the Bohr radius is conserved in the expansion of space, the radius of the 
Earth is conserved. However, the rotational velocity (and the angular momentum) of the 
Earth decrease in proportion to the decrease of c0. Accordingly, with reference to equa-
tion (5.6.2:2) the rotation time, i.e. the length of a day, increases as 
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The lengthening of a day expressed in equation (5.6.2:6) results from the expansion of 
space and does not include the lengthening of a day due to the tidal interactions with the 
Moon and the Sun. The effect of the expansion of space on the length of a day is fully 
compensated by the reduction of the ticking frequency of atomic clocks, which is reduced 
in direct proportion to the velocity of light. Accordingly, changes in the length of a day 
observed with an atomic clock come from effects other than the direct effect of the ex-
pansion of space on the rotation of the Earth. 

5.6.3 Days in a year based on coral fossil data 

An interesting indication of the development of the length of a day comes from coral 
fossil data dating back 100–800 million years. Fossil layers preserve both the daily and 
annual variations, thus giving the number of days in a year. At least partly, tidal variations 
can also be detected, which allow an estimate of the development of the number of days 
in a lunar month.  

Equations (5.6.2:1–3) relate differential changes in the radii, orbiting velocities, and 
orbiting times to the changes in the 4-radius and the velocity of light. For the interpreta-
tion of observations over long periods of time, as in the case of coral fossil data, it is nec-
essary to peg the changes to the absolute times of the observations. 
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With reference to equations (3.3.3:7) and (4.2.6:6) and by denoting the present semi-
major axis of an orbiting system as a0 and the present time from the singularity as t0, the 
semi-major axis a at time t can be expressed as 
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which gives the change in the semi-major axis 
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With reference to equation (5.6.2:3), the change in the orbital period obtains the form 
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and with reference to equation (5.6.2:6) the change in the rotational period of solid ob-
jects obtains the form  
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As shown by equations (5.6.3:3) and (5.6.3:4), the increase of an orbital period is 
greater than the increase of a rotational period. This is because the orbiting radii are sub-
ject to an increase with the expansion of space, whereas the radii of spinning solid objects 
are not. If the expansion of space were the only factor relevant to the length of a day and 
the length of a year, the number of days in a year would increase with the expansion of 
space. The increase in the Earth to Moon distance, however, results in an extra decrease 
in the rotational velocity of the Earth, which makes the number of days decrease with the 
expansion of space. In other words, in the past the number of days in a year has been 
greater. 

With reference to equation (5.6.3:3) the length of the year, Yt , for Δt years ago, at the 
time t = t0 –Δt, can be calculated as  
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and, with reference to equation (5.6.3:4), the length of a day, Dt , due to the expansion of 
space as  
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When the lengthening of a day due to the lengthening of the Earth to Moon distance 
and the tidal interaction in the Earth–Sun system are included the length of a day as it 
was for Δt years ago can be expressed as  
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where the relative shortening of a day due to the interactions of the Earth with the Moon 
and the tidal effect of the Sun in the last term is assumed to increase in direct proportion 
to the time from singularity (as does the period of the moon). To match with observa-
tions in coral fossils, the last term, (dD0/D)/100Y, should have a value of 2.5 

[(ms/day)/century] = 2.910–10 [1/y] giving equation (5.6.3:7) in form 
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corresponding to the number of days in a year 
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In the Introduction, Figure 1.3.4-1 illustrates the development of the length of the 
year (in current days) and the number of days in a year during the last 1000 million years. 
The number of days given by equation (5.6.3:9) follows well the development of the 
number of days in a year counted in fossil samples since almost one billion years back. 
Experimental values, shown as squares in the figure have been collected from papers 
comprising coral fossil data 56,57,58  and stromatolite data from the Bitter Springs For-
mation 62 (the data from the samples going back to more than 800 million years). In all 
data points in Figure 1.3.4-1, the DU correction in the age estimate is made according to 
equation (6.4.3:10).  
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5.7 Timekeeping in the Dynamic Universe 

5.7.1 Periodic phenomena and timescales 

Characteristic wavelength and frequency of atomic objects 

When expressed in terms of the Bohr radius, Balmer’s formula for the characteristic 
or characteristic emission wavelength obtains the form [equation (5.1.4:21)] 

( )( )

( ) ( )0 0 0

1, 2 2 2 2
2 2 2 21 2

1 2

0

4 4

1 1
1 1 1

i

i

β

β n n n

i

i

π a π a
λ

αZ n n
αZ n n β

=

= =
 −   − − 
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which shows the increase of the Bohr radius and the emission wavelength as functions of 
the motion of the emitting atom.  

The linkage of the emission wavelength to the Bohr radius is not a specific property of the Dynamic 
Universe only. The linkage is also present in the standard quantum mechanical solution of the hydrogen 
atom. 

The additional feature given by the Dynamic Universe model is the linkage of the 
Bohr radius and the emission wavelength to the velocity of the atom in the local frame 
and the parent frames. An important consequence of the linkage is the conservation of 
the resonance condition in moving resonators [see Section 5.5.2].  

Because the definition of a second is based on the frequency of a Ce-clock, Balmer’s 
formula for the characteristic oscillation frequencies of atomic oscillators is of special im-
portance [see equations (5.1.4:14) and (5.1.4:15)] 
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where me(Nucleus) is the rest mass of electron in the nucleus frame as given in equation 
(5.1.4:9) and c is the local velocity of light related to velocity of light in hypothetical ho-
mogeneous space, c0, by equation (5.1.4:10).  

Substitution of equation (3.3.3:8) for c0 in equation (5.7.1:2) Balmer’s formula for fre-
quencies yields the form [see equation (5.1.4:15)]  
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where the constant An1,n2 is 
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and B(δ,β) is 
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Equations (5.7.1:4–6) give the characteristic oscillation frequencies of hydrogen-like 
atoms in terms of the time since singularity of space, the state of motion and gravitation 
of the oscillating atom in space, and the main quantum numbers defining the transition in 
the atom. 

In a defined state of motion and gravitation in space, the frequency of an atomic oscil-
lator is a function of time t only 
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or in differential form  
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Natural periodic phenomena 

Timekeeping is based on selected periodic phenomena like the orbital motion of the 
Earth, the rotation of the Earth, or the frequency of characteristic oscillation of atomic 
objects. In the Dynamic Universe, none of the periodic phenomenon mentioned is con-
stant but slow down with the expansion of space and the related dilution of the energy 
excitation of all matter and processes in space. The lengthening of a day due to expansion 
of space corresponds to the increase of a second based on the period of Ce-clock. How-
ever, the increase of lunar distance and tidal interactions result in extra lengthening of a 
day which make the length of a day increase by about 2 ms/century when measured with 
atomic time, Table 5.7.1-I. 

 

Periodic 
phenomenon 

Proportionality 
to the time from 
singularity 

Annual increase of 
the period (due to 
expansion) ΔP/P 

Change due to 
other identified 
mechanisms 
ΔP/P 

Atomic clocks ~ t 1/3 ≈ 3.6·10–11  

Rotational period  
(a day on the Earth) 

~ t 1/3
 

≈ 3.6·10–11 ≈ 2.7·10–10 

Orbit time of planets (a 
year for the Earth) 

~ t ≈ 1.1·10–10  

Table 5.7.1-I. The direct effect of the expansion of space on the period of atomic clock, the length 
of a day, and the length of a year. The length of a day is also affected by the increase in the lunar 
distance related to tidal interactions. 
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In the DU framework, most natural phenomena are related to the slowing velocity of 
light, determined by the expansion velocity of space in the fourth dimension. It means 
that like the ticking frequency of atomic clocks, also the radioactive decay rate slows 
down with the expansion of space. Accordingly, radiometric dating results based on con-
stant decay rates of radioactive isotopes must be corrected for faster decay rates in the 
past. The decay rates approach infinity in the singularity which excludes the possibility of 
radiometric ages beyond the age of the expanding space. 

Radioactive decay rates, like the frequencies of atomic clocks, are subject to slowing 
like the frequencies of atomic clocks. In radiometric dating, linear extrapolation of ages 
based on constant decay rates gives a major error in ages approaching the age of the ex-
panding space. 

For terrestrial observations, it is, however, convenient to fix the timescale and the unit 
of time, a second, to the frequency of local atomic clocks, which are the most accurate 
known instruments available for measuring time. In present timekeeping, the unit of time, 
the SI Second, is based on the frequency of radiation from the transition between two 
hyperfine levels of the ground state of the cesium-133 atom on the Earth geoid. 

Coordinated Universal Time 

The early definition of a second was based on the average rotation time of the Earth 
(1/86400 of the average day). Currently, the average day is about 2 milliseconds longer 
than 86400 seconds. To match the Coordinated Universal Time (UTC) to UT1, the timescale 
following the rotation of the Earth, a leap second is added almost annually to the UTC-
time, Figure 5.7.1-1. 

The DU framework does not require different timescales (coordinate times) in differ-
ent gravitational frames. For example, the effect of local gravitational environment re-
quired in precise ephemeris calculations is included in the equations of motions (see equa-
tion (4.2.2:3)).  

The frequencies of atomic clocks in different gravitational environments are expressed 
in terms of the energy state of the clock based on the nested energy frames. The system 
of nested energy frames links the frequency of a clock in an arbitrary energy environment 
to the frequency of a Ce-clock in a fixed position on the Earth geoid, thus linking togeth-
er the Terrestrial Time (TT), Geocentric Coordinate Time (TCG), and Barycentric Coor-
dinate Time (TCB) and allowing a completion of the list with Milky Way Coordinate 
Time and Extragalactic Coordinate Time.  

Due to the eccentricity of the Earth’s orbit, the frequencies of atomic clocks on the 
Earth and in the Earth gravitational frame are subject to annual variations. At perihelion 
the orbital velocity of the Earth is at its maximum and the distance to the Sun is at its 
minimum. Both of these factors result in the slowing of clock frequencies. Such variation 
is observable only in comparison to a reference clock outside the solar gravitational 
frame.  

The rotation of the Earth results in a local daily variation in the distance to the Sun. 
With reference to the analysis in Section 4.1.5, such variation, as internal variation in the 
Earth gravitational frame, does not affect the frequency of the clocks. The same is true 
for the frequency of Earth satellite clocks; the frequency of an Earth satellite clock is in-
dependent of the momentary distance from the satellite to the Sun.  
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5.7.2 Units of time and distance, the frames of reference 

The Earth second 

Equation (5.7.1:4) gives a general expression for the frequency of an atomic oscillator, 
the primary standard for the SI Second. Relative to the frequency of the oscillator at a 
selected moment t0, the frequency at t can be expressed as 
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where the factor An1,n2 [see equation (5.7.1:5)] defines the effect of the quantum states the 
oscillation is related to and t is the time since the singularity, which now is about 9.3 bil-
lion years.  

The unit of time, the second, was originally defined as the fraction 1/86400 of the 
mean solar day. Now, according to the definition accepted in 1967, the length of a sec-
ond, the SI unit of time, is equal to the duration of 9192631770 periods of the radiation 
corresponding to the transition between two hyperfine levels of the ground state of the 
cesium-133 atom.  
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Figure 5.7.1-1. A leap second has been added since 1972 to the Coordinated Universal Time 
(UTC) in order to keep it synchronized to the rotational velocity of the Earth and the related 
UT1-time. GPS time was fixed to UTC in 1972 which means that in 2004 GPS is 13 seconds 
ahead of UTC. The reference is the International Atomic Time (TAI) based on atomic clocks on 
Earth’s geoid. 
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The timescale based on the SI second is referred to as International Atomic Time 
(TAI), which is a statistical atomic time scale based on a large number of clocks operat-
ing at standards laboratories around the world. TAI-time is maintained by the Bureau 
International des Poids et Mesures; its unit interval is exactly one SI second on the Earth 
geoid, “the equipotential surface of the Earth’s gravity field which best fits global mean sea level”. 

With reference to equation (3.3.3:10), in absolute time the SI-second lengthens as 

   11ΔΔ Δ
3.6 10 1 year 1.13 ms year

fT c

T f c

−= − = −      (5.7.2:3) 

and is subject to the gravitational state and motion of the standard. 
Because important quantities observed are proportional to the velocity of light on the 

Earth, it is useful to apply the presently defined SI Second as the Terrestrial SI Second 
binding the TAI-time to the Earth geoid and the slowing velocity of light on the 
Earth. By definition, the SI-second is 
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where ΔN = 9192631770 is the number of cycles defining the length of a second and fre-

quency ( )Ce, Φ ,G t
f  is the average frequency of the SI-second standard on the Earth geoid  
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where δG(Φ) and βG(Φ) are the gravitational factor and velocity of rotation at latitude Φ on 
the geoid. The geoid is defined so that the total effect of the gravitational factor and mo-
tion is constant at any latitude 
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In equation (5.7.2:6), the frequency ( )Ce, Φ ,G t
f  is the average frequency of the SI-

second standard on the Earth geoid  
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where fE,0 is the frequency of the standard at rest in apparent homogeneous space of the 
Earth gravitational frame 
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combining the effects of motion and gravitation in the Extragalactic frame (X=XG), 
Milky Way (X=MW) frame, and the solar frame (X=S).  

The reference frequency fCe(0,t) in equation (5.7.2:9) 
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is the frequency of the Ce133 standard at rest in hypothetical homogeneous space slowing 
down with the deceleration of the expansion of space in the direction of the 4-radius.  

In a general form, the factors of gravitation and motion on the frequency can be ex-
pressed form of factors GX is 
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or by approximating  
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and 
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Using these approximations, the total effect of the state factors, GX, can be expressed 
as 
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or in terms of frequency 
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where fCe(0,t) is the frequency of the Ce-standard at rest in hypothetical homogeneous 
space. 

For an arbitrary terrestrial clock, index X has values X = XG, MW, S, E, and L, where 
L refers to a local energy system to which the clock is bound to in the Earth gravitational 
frame. State factor GE gives the effects of gravitation and motion in the Earth gravita-
tional frame, GS gives the gravitation and motion of the local frame in the solar bary-
center frame, GMW gives the gravitation and motion of the solar frame in the Milky Way 
frame, and GXG gives the effects of gravitation and motion of the Milky Way frame in 
extragalactic space, which is regarded as the frame next to hypothetical homogeneous 
space. 

The frequency of a clock in an arbitrary state of gravitation and motion can be related 
to the SI standard clock as 
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where the state factors in the denominator refer to the state of the SI-second standards 
on the Earth geoid.  

For objects in Kepler’s orbit in a gravitational frame, the orbiting radius R can be ex-
pressed as 
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where a is the semimajor axis, e is the eccentricity of the orbit, and φ the angle from peri-
helion in the direction of the motion. The last form of equation (5.7.2:17) applies for or-
bits with small eccentricity. 

The energy relation for Kepler’s orbit can be expressed as 
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Substitution of equations (5.7.2:17) and (5.7.2:18) into equation (5.7.2:9) gives factor 
GXi of an object in Kepler’s orbit combining the effects of motion and gravitation in 
form 
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The meter 

In 1980, the iodine stabilized Helium-Neon laser wavelength was accepted as a length 
standard. It had a wavelength uncertainty of 1 part in 1010 at the time. In 1983, the meter 
was redefined again. The definition states that one meter is length traveled by light in 
vacuum during 1/299792458 of a second based on the velocity of light equal to 
c = 299,792,458 m/s. The General Conference on Weight and Measures, however, ac-
cepted the iodine stabilized Helium-Neon laser72 a recommended radiation for realizing 
the meter. The wavelength of the HeNe laser is λHeNe = 632.99139822 nm with an esti-
mated relative standard uncertainty of ± 2.5 x 10–11. 

By applying equation (5.7.2:5), the 1983 definition the SI-meter can be expressed as 
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 (5.7.2:20) 

where cE0(1–δG(Φ)) is the local velocity of light at latitude Φ. Comparison of equations 
(5.7.2:5) and (5.7.2:20) shows that the SI-second is constant on the Earth geoid, but the 
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SI-meter is increased at low latitudes (close to the equator) due to the rotational motion 
of the Earth. 

By applying equation (5.1.4:16), the length of a meter based on the characteristic 
wavelength of the iodine stabilized Helium-Neon laser on the Earth geoid can be ex-
pressed in form 
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where Nλ = 632 991 398 220 is the number of waves in a SI-meter, and wavelength 
λHeNe[E,0] is the wavelength of the laser at rest in the Earth gravitational frame (like at the 
poles). In absolute meters, equation (5.7.2:21) makes the [SI]-wavelength of the λHeNe(SI) 
laser a function of the latitude through the effect of the rotational velocity βG(Φ). Compar-
ison of equations (5.7.2:20) and (5.7.2:21) shows that the SI-meter based on the light time 
in 1/299792458 of an SI-second and on the wavelength of a Helium-Neon laser are 
equally functions of latitude. At the equator on the Earth geoid the SI-meter is about 

1.210–12 meters longer than it is at the poles. 
Because the Bohr radius is directly proportional to the characteristic wavelengths, the 

classical meter standard based on a platinum rod is also a function of latitude. Lengthen-

ing of the one meter platinum rod by 1.210–12 is about 1% of the radius of a platinum 

atom in the rod. In the case of the HeNe-laser, the lengthening is about 210–6 of the 
wavelength in a meter. 

The Earth geoid 

The effects of gravitation and motion in the Earth gravitational frame [or in Earth 
Centered Inertial frame (ECI-frame)] are expressed in terms of factor GE in equation 
(5.7.2:6). With reference to equation (5.7.2:7), the factor GE consists of the term ΔGEδ 
related to the gravitational state in the Earth gravitational frame and the term ΔGEβ relat-
ed to the velocity in the Earth gravitational frame.  

On the Earth geoid, ΔGEδ is determined by the local radius of the geoid and the effect 
of the quadrupole moment of gravitation due to the ellipsoidal shape of the Earth 
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where J2 is the quadrupole moment coefficient J2 = 1.082630010–3 and r0(E) is the equato-
rial radius (latitude Φ = 0) of the Earth. Radius rΦ(E) at latitude Φ is approximated as 
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 (5.7.2:23) 

On the geoid, the velocity term ΔGEβ can be expressed as 
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where vΦ(rot) is the rotational velocity, rΦ(E) the radius on the geoid at latitude Φ, and ωE 
the sidereal angular velocity of the rotation of the Earth 
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The effect of latitude on the gravitational and rotational terms ΔGEδ and ΔGEβ is op-
posite. Close to the poles, the velocity due to rotation is lower, reducing the rotational 
velocity term while the gravitational term is increased due to the smaller radius of the 
Earth. The average value of factor GE on the Earth geoid (the value applicable to an SI-
second standard) is 

( ) ( ) 101 Δ Φ Δ Φ 1 6.969291 10E Eδ EβG G G −− − −   (5.7.2:26) 

The variation of ΔGE(Φ) = [ΔGEδ(Φ)+ ΔGEβ(Φ)] – ΔGEδ (Φ=π/2) as a function of 
latitude Φ is presented in Figure 5.7.2-1. The reference level in the curve in Figure 5.7.2-1 
has been fixed to the value of ΔGE at the poles where only the gravitational term ΔGEδ 
applies. The calculation is based on the CODATA 2006 value of the gravitational con-

stant G = 6.67428 10 –11 [Nm2/kg2] and the Earth mass ME = 5.974 1024 [kg], Figure 
5.7.2-1. 

 
Figure 5.7.2-1. Dependence of the ticking frequency of atomic clocks on latitude on the Earth 
geoid according to equations (5.7.2:22) and (5.7.2:24). Upper curves show the opposite effects of 
gravitation and motion and the lower curve the sum of the two effects. The frequency of a clock 
at either pole, where the angular velocity is zero, is used as the reference.  
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As illustrated by Figure 5.7.2-1, at the geoid defined by equation (5.7.2:22), the effects 
of gravitation and the rotational velocity of the Earth is compensated at an accuracy bet-
ter than 5·10–16. However, for a precise definition of the Terrestrial SI Second, the loca-
tion of the primary standard should be defined at a fixed latitude. A preferred location 
would be at the North or South Pole where the effect of motion in the Earth frame is 
zero. This is also a preferred condition for the definition one SI meter. 

5.7.3 Periodic fluctuations in Earth clocks 

The effect of the eccentricity of the Earth-Moon barycenter orbit 

The motion of the Earth in the solar barycenter frame can be described as Kepler’s 
orbit. Due to the eccentricity of Earth’s orbit, the factor GS(B) for Earth in the solar gravi-
tational frame is not a constant but varies during the year, reaching a minimum on Janu-
ary 2 when the Earth is at the perihelion of its orbit.  

The factor GS(B) in equation (5.7.2:19) gives the correction due to the gravitational 
state and orbital velocity of the Earth-Moon barycenter frame, which lies within the solar 
barycenter frame  
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where aE(S) is the semimajor axis of the Earth-moon barycenter orbit, and angle φ  the 
true anomaly.  

Substitution of numerical values  

aE(S) = 1.49597891011 [m], 

G  = 6.67410–11 [Nm2/kg2], 

MS  = 1.98911030 [kg], and 

e  = 0.0167  

gives the numerical value for GS(B) as function of φ 
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The anomaly angle φ can be expressed in terms of the day in a year as 
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where D is the number of the day counted from the beginning of the year, and DPH = 2 is 
the number of the perihelion day (January 2). Substitution of equation (7.3.4:3) for φ in 
equation (5.7.3:2) gives ΔGS(φ) in the form 

( )
8 10Δ 1.4808 10 3.3037 10 cos 2

365

PH

S B

D D
G π− − − 

  +    
 

 (5.7.3:4) 
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Figure 5.7.3-1. The rotation of the Earth and the inclination angle between the equatorial plane 
and the ecliptica result in local variations in the distance to the Sun. 

Applying (5.7.3:4) the frequency of Earth clocks in solar gravitational frame can be 
expressed  

( ) ( )
8 10

0
1 1.4808 10 3.3037 10 cos 2

365

PH

Earth Sun

D D
f f π− − −  

 −  −     
  

 (5.7.3:5) 

where f0(Sun) is the frequency of a hypothetical reference clock at rest in the apparent ho-
mogeneous space of the solar gravitational frame. 

The frequency variation of (5.7.3:5) can only be observed with reference to a clock 
outside the solar system. Such a reference could be a pulsar.  

The frequency observed from a pulsar is subject to Roemer effect, resulting from the 
Doppler effect due to the orbital velocity of the Earth towards or from the pulsar ob-
served. The Doppler effect due to the orbital velocity of the Earth may be of the order of 

4maxΔ
10orbf v

f c

−   (5.7.3:6) 

corresponding to a situation when the pulsating object is at the orbital plane of the Earth. 
Accordingly, the effect of the eccentricity of the Earth orbit is only of the order of ppm 
compared to the Roemer effect in the observed pulsar frequency. 

Rotation and the inclination angle of the Earth 

The rotation of the Earth results in a daily periodic variation in the distance from a 
particular location on the Earth to the Sun. The position of a location in the Earth gravi-
tational frame relative to the solar gravitational frame can be illustrated by the projection 
of the location in the Sun frame, which is the apparent homogeneous space of the Earth 
frame (see Figure 4.1.5-1). Due the inclination angle between the equatorial plane and the 
ecliptica plane there is a small annual variation in the daily distance variation. The inclina-
tion also results in a small annual periodic displacement in the solar distance, Figure 
5.7.3-1. 

With reference to equation (4.1.5:4), within the Earth frame a difference Δr in the dis-

tance to the Sun (Δr ≪ rs ) does not affect the rest energy of mass. Accordingly, there is 
no daily period in the frequency of clocks on the Earth due to the variation in the dis-
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tance to the Sun. This is because the effects of gravitation and motion of the locations in 
the solar gravitational frame cancel each other (see Section 4.1.5). 

The velocity of light, however, is subject to change due to the variation in the distance 
to the Sun. With reference to equation (4.1.10:3) such variation is 

S

S

drdc
δ

c r
  (5.7.3:7) 

where rS is the distance from the center of the Earth to the Sun and drS is the difference 

in the distance to the Sun. The difference drS (,D,Φ,H) is a function of the inclination 
angle, the day of the year, the latitude, and the hour of the day in local time. The maxi-
mum daily variation occurs at the equator at vernal and autumnal equinox, then ΔrS = +rE 
at midnight and ΔrS = –rE at noon. The maximum of the annual variation occurs at the 
North Pole and South Pole; at Winter solstice the distance is at maximum at the North 
Pole and at the minimum at South Pole.  

5.7.4 Galactic and extragalactic effects 

Solar system in Milky Way frame 

The speed of the solar system in the Milky Way is about 220 km/sec. Applying the es-

timated mass of the Milky Way MMW  21011, the solar mass  41041 [kg] and the dis-

tance rMW  25 000 l.y.  2.41020 [m], the factors of ΔGMW(δ) and ΔGMW(β) due to gravita-
tion and motion in equation (5.7.2:7) are 
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G

−

−



 
 (5.7.4:1) 

According to the values in equation (5.7.4:1), the velocity factor ΔGMW(β) of the solar 
system in the Milky Way is only about half that required by circular Kepler’s motion. In 
terms of velocity, this means that the velocity is about 0.7 of the velocity on a circular 
orbit. 

Milky Way galaxy in Extragalactic space 

The Milky Way is part of the Local Group of galaxies, of which the Andromeda Neb-
ula is the other large member. The Milky Way is estimated to move towards the common 
center of the Local Group at a speed of about 40 km/s. The Local Group is part of the 
Local Supercluster, a much larger collection of galaxies including the Virgo Cluster at 
about 45 million light years from the Milky Way. The Local Group is estimated to move 
at a speed of about 600 km/s towards the Great Attractor in the direction of the constel-
lation Centaurus. When estimated from the dipole pattern of the microwave background 
radiation, the solar system is moving at 350-400 km/sec relative to the background.  

The gravitational structure at the extragalactic level is not known in detail. Assuming, 
that a velocity of 600 km/s has been obtained in free fall from gravitation we end up with 
factors of ΔGXG(δ) and ΔGEG(β) as high as 
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( ) ( ) ( )
23 6Δ Δ Δ 2 ½ 2 10 4 10XG XG δ XG β

G G G − −= +    =   (5.7.4:2) 

5.7.5 Summary of timekeeping 

Average frequency of the SI-second standard 

In absolute time, the frequency of an SI-second standard, as well as that of any clock 
based on characteristic oscillation frequencies of atomic objects, can expressed in form 

( ) 2

, 0,0

0

1 1
n

δ β i i

i

f f δ β
=

 = − −
   (5.7.5:1) 

where f0,0 is the frequency of the clock at rest in hypothetical homogeneous space, and δi 
and βi characterize the states of gravitation and motion of the clock in the local energy 
frame and the parent frames. The frequency f0,0 is subject to slowing due to the gradual 
release of the energy excitation of matter with the expansion of space 

1 3

0,0f A t −
=   (5.7.5:2) 

The slowdown of the frequency f0,0 occurs in parallel with the slowdown of the veloci-
ty of light with the expansion of space. 

Clock frequencies on the Earth and in the Earth gravitational frame are subject to an-
nual periodic variation due to the eccentricity of the Earth orbit. The effect of local peri-
odic variations in solar distance within the Earth gravitational frame on the clock fre-
quencies are cancelled due to the opposite effects of gravitation and velocity in the solar 
frame (Section 4.1.5). 

By substituting all non-periodic factors of gravitation and motion (G&M) of a location 
on the Earth geoid in the Earth gravitational frame (E-frame) in equation (5.7.2:26), in 
the Sun frame (S-frame) in equation (5.7.3:4), in the Milky Way frame (MW-frame) in 
equations (5.7.4:1), and in Extragalactic space (XG-frame) in equation (5.7.4:2) into equa-
tion (5.7.2:11), the average frequency of the SI-second standard, a Ce-clock on the Earth 
geoid, can be related to the frequency of a Ce-clock at rest in hypothetical homogeneous 
space as 
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 (5.7.5:3) 

The average frequency of a clock moving at velocity βL in a closed energy system L in 
a laboratory at gravitational state δG and velocity βG in the Earth gravitational frame is 
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(5.7.5:4) 

A closed energy system in the Earth frame may be a particle accelerator, a centrifuge, 
or any other system in which local potential energy is converted into motion. For a clock 
stationary on the Earth in the Earth gravitational frame, in an airplane, or in a satellite, 
βL = 0. By dividing equation (5.7.5:4) by equation (5.7.5:3), we can relate the average fre-
quency of a Ce-standard in δE, βE state in the Earth frame to the average frequency of the 
Ce-standard on the Earth geoid  

( ) 2 2

Ce, Ce,SI, Ce,SI,10 10

1 1 1 ½

1 6.969291 10 1 6.969291 10

E E E E
t t t

δ β δ β
f f f

− −

− − − −
= 

−  − 
 (5.7.5:5) 

For two objects in the Earth frame, all the G&M factors in the parent frames are 
equal.  

In equation (5.7.5:5), the frequency fCe,SI,t/(1–6.96929110–10) is the reference frequen-
cy of a Ce-standard for the Earth gravitational frame  

( )Ce,SI, 10

Ce,0 Ce,SI,10
1 6.969291 10

1 6.969291 10

t

E t

f
f f −

−
=  + 

− 
 (5.7.5:6) 

Physically, the frequency fCe,0E has the meaning of a reference Ce-clock at rest in the 
apparent homogeneous space of the Earth frame. Substitution of fCe,0E back into equation 
(5.7.5:5) gives the frequency of a Ce-clock in a δE, βE state in the Earth frame in form 

( ) ( )2 2

Ce, Ce,0 Ce,01 1 1 ½t E E E E E Ef f δ β f δ β= − −  − −  (5.7.5:7) 

Equations (5.7.5:7) and (5.7.5:6) apply for clocks in the Earth gravitational frame, on 
the Earth and in Earth satellites, in full agreement with the Geocentric Coordinate time 
definition. 

Geocentric Coordinate Time (TCG) is a coordinate time having its spatial origin at 
the center of mass of the Earth. TCG differs from TT as: TCG – TT = Lg x (JD – 

2443144.5) x 86400 seconds, with Lg = 6.96929110–10.  

 
Following the same procedure as done for an arbitrary clock on Earth, the frequency 

of a clock outside the Earth frame, at gravitational state δS and velocity βS in the solar 
gravitational frame can be expressed as 
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where all the G&M factors outside the Sun frame are equal and, accordingly, reduced. 

The frequency fCe,SI,t/[(1–6.96929110–10)(1–1.480810–8) is the reference frequency of a 
Ce-standard for the solar gravitational frame 
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 (5.7.5:9) 

Equation (5.7.5:9) is closely related to the definition of the Barycentric Coordinate 
time. 

Substituting fCe,0S back into equation (5.7.5:8), the frequency of a Ce-clock in a δS, βS 
state in the Sun frame becomes 

( ) ( )

( )( )
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 (5.7.5:10) 

Equation (5.7.5:10) is needed for spacecraft clocks in the solar gravitational frame. Far 
from the Earth, the frame factors δE and βE approach to zero. When applied to clocks 
within the Earth frame, equation (5.7.5:10) combines the effects of the Earth frame and 
the Sun frame. Physically, frequency fCe,0S has the meaning of a reference clock at rest in 
the apparent homogeneous space of the solar gravitational frame.  

Barycentric Coordinate Time (TCB) is a coordinate time having its spatial origin 
at the solar system barycenter. TCB differs from TDB in rate. The two are related by: 

TCB – TDB = Lb x (JD – 2443144.5) x 86400 seconds, with Lb = 1.55050510–8.  

 
For the Milky Way frame, the reference frequency obtains the form 
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 (5.7.5:11) 

For extragalactic frequency comparisons, the hypothetical homogeneous space refer-
ence fCe,0,t is needed. It can be solved from equation (5.7.5:1), which results in 

( )6

Ce,0, Ce,SI, 1 5.27 10t tf f − +   (5.7.5:12) 

In principle, equation (5.7.5:12) applies in any energy frame in a nested energy system 
[see equation (5.7.2:9)]. Specifically, it is needed in cosmological observations at extraga-
lactic distances. 
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6. The dynamic cosmology 

The DU model means a major reorientation to our picture of the Universe. We live in 
a much more structured world than suggested by the standard cosmology model based on 
the theory of relativity. Energy structures in space are created via diversification of mass 
and the expressions of energy in space maintaining a link to the whole through a system 
of nested energy frames. As a consequence, the dimensions of galaxies and the radii of 
orbiting stellar systems expand in direct proportion to the expansion of whole space. 

The precise geometry, dynamics and energy development of space allow the deriva-
tion of precise mathematical expressions for redshifts, optical distances, angular sizes, and 
apparent magnitudes of cosmological objects without additional parameters.  

The expansion of space will continue until infinity at a decelerating rate until the ener-
gy of motion gained from the gravitational energy in the pre-singularity contraction is 
paid back to the gravitational energy of the structure. 

6.1 Redshift and the Hubble law 

Redshift observations by Edvin Hubble in the 1920’s provided the observational un-
derpinning for the conclusion that space is undergoing homogeneous expansion. The 
recession velocity of galaxies appeared to be proportional to their distance. The relation-
ship between the recession velocity and the distance of objects is known as Hubble’s law.  

6.1.1 Expanding and non-expanding objects 

As shown by the analysis of the Bohr radius, material objects built of atoms and mol-
ecules are not subject to expansion with space, Figure 6.1.1-1. As shown by equations 
(5.1.4:16) and (5.1.4:19), like the Bohr radius, the characteristic emission wavelengths of 
atomic objects are likewise unchanged in the course of the expansion of space. When 
propagating in space, the wavelength of electromagnetic radiation is increased in direct 
proportion to the expansion. Accordingly, when detected after propagation in space, 
characteristic radiation is observed redshifted relative to the wavelength emitted by the 
corresponding transition in situ at the time of observation. 

The theory of relativity and the standard cosmology model assume that the rest energy 
of matter has remained constant since the formation of matter after the “Big Bang”. 
Likewise, the velocity of light is assumed to have remained constant. In the DU frame-
work, the energy excitation of motion and gravitation is diluted during the expansion, 
which is directly reflected in the rest energy of matter 

0

"

"
rest

GmM
E c mc

R
= =   (6.1.1:1) 



250 The Dynamic Universe 

 

 
Figure 6.1.1-1. (a) Dimensions of galaxies and other gravitationally bound systems expand in direct 
proportion to the expansion of space. (b) Localized objects bound by electromagnetic forces con-
serve their size. The characteristic wavelength emitted by atomic objects is conserved. (c) The 
wavelength of electromagnetic radiation propagating in space increases in direct proportion to the 
expansion of space. As a consequence, the observed wavelength is redshifted. 

The velocity of the expansion of space, c0, changes with the expansion of space in ac-
cordance with equation (3.3.3:8) as 

4
0

2

3

R
c

t
=  (6.1.1:2) 

where t refers to the time from the singularity in the primary energy buildup process. Ac-
cording to equation (5.1.1:15), the unit energy of a cycle of electromagnetic energy emit-
ted is expressed as 

0
0 0λ λ

h
E c c m c c

λ
= =  (6.1.1:3) 

where mλ  is the mass equivalence carried by a radiation quantum. As a requirement of the 
conservation of total mass in the course of the expansion of space, the mass equivalence 
of radiation propagating in space is conserved. 

Comparison of equations (6.1.1:1) and (6.1.1:3) shows that the rest energy of an emit-
ting object and the energy of electromagnetic radiation emitted change in the same way in 
the course of the development of the universe.  

As shown by equation (5.1.4:16), the wavelength of the characteristic radiation emitted 
by an object is a function of the emitting object but independent of the expansion of 
space 
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 (6.1.1:4) 

A hydrogen atom a billion years ago emitted exactly the same wavelength for a specif-
ic energy transition as it does today in the same local environment. The wavelength of 
radiation propagating in expanding space is assumed to increase in direct proportion to 
the expansion but the mass equivalence of radiation is conserved.  
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6.1.2 Redshift and Hubble law 

Optical distance and redshift in DU space 

As a consequence of the spherical symmetry and the zero-energy balance in space, the 
velocity of light in DU space is determined by the velocity of space in the fourth dimen-
sion. The momentum of electromagnetic radiation has the direction of propagation in 
space. Although the actual path of light comprising the expansion of space in the direc-
tion of the 4-radius and the propagation of light in space is a spiral in four dimensions, 
the length of the optical path in the direction of the momentum of radiation in space, is 
the tangential component of the spiral. 

Due to the equal velocities of space in the fourth dimension and the propagation ve-
locity of light in space, the length of the optical path in space is equal to the increase of 
the 4-radius, Figure 6.1.2-1 

( )4 4 0
D R R−=  (6.1.2:1)  

The differential of optical distance can be expressed in terms of R0 and the distance 
angle θ as 

4 0 4dD R dθ c dt dR= = =  (6.1.2:2)  

By first solving for the distance angle θ 
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the optical distance D obtains the form 

 
Figure 6.1.2-1. (a) The classical Hubble law corresponds to Euclidean space where the distance of 
the object is equal to the physical distance, the arc Dphys, at the time of the observation. (b) When 
the propagation time of light from the object is taken into account the optical distance is the 
length of the integrated path over which light propagates in space in the tangential direction on the 

4-sphere, so that
optD D dD⊥= =  . Because the velocity of light in space is equal to the expansion 

of space in the direction of R4, the optical distance is D = R4–R4(0), the lengthening of the 4-radius 
during the propagation time.  
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Figure 6.1.2-2. The increase in the wavelength 
of electromagnetic radiation propagating in 
expanding space. 

 

( )4 1 θD R e−= −  (6.1.2:4)  

where R0 means the value of the 4-radius at the time of the observation. 
The wavelength of radiation propagating in expanding space is assumed to be subject 

to increase in direct proportion to the expansion space, Figure 6.1.2-2. Combining with 
equations (6.1.2:1) and (6.1.2:4), the redshift, the increase of the wavelength, becomes 
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 (6.1.2:5)  

Solved from (6.1.2:6) the optical distance D can be expressed as 
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 (6.1.2:6)  

The observed recession velocity, the velocity at which the optical distance increases, 
obtains the form 

( ) ( )0 0
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v c e c
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−= = − =  (6.1.2:7) 

As demonstrated by equation (6.1.2:7) the maximum value of the observed (optical) 
recession velocity never exceeds the velocity of light, c, at the time of the observation, but 
approaches it asymptotically when distance D approaches the length of 4-radius R0.  

Figure 6.1.2-3 illustrates the development of the size, the optical path, and the redshift 
in spherically closed space. The optical distance D is the tangential length of the optical 
path. D is equal to the increase of the 4-radius during the propagation of light from the 
object to the observer.  

Classical Hubble law 

The classical Hubble law is written in terms of recession velocity as 

0Hv H D=  (6.1.2:8) 
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where H0 is the Hubble constant. The classical Doppler effect expresses a linear connec-
tion between the classical redshift and the recession velocity as 

H
H

v
z

c
=  (6.1.2:9) 

In terms of the redshift, which is the observed quantity, the classical Hubble law can 
be written as 
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where  
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c
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H
 =  (6.1.2:11) 

is referred to as the “Hubble radius” or the radius of the present curvature of space. In 
the Big Bang model the Hubble radius can be interpreted as the distance traveled by light 
at velocity c since the Big Bang (t =1/H0). 

Redshift in standard cosmology model 

In the standard cosmology model, the general expression for the redshift is  
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λ a t
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here a(tr) and a(te), following the formalism of the general theory of relativity, are distanc-
es proportional to the dimensions of space when a light signal is received and emitted, 
respectively 49. In the DU geometry, the natural measure of expanding distances in space 

is the length of the 4-radius, which at the time of observation is a(tr) = aR0. Because light 
in space propagates at the same velocity as space expands in the direction of the 4-radius, 
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Figure 6.2.1-3. The length of the R0 radius 
and the location of objects for redshifts 
z = 0 to 5. Location R4 = 1 is the observ-
er’s location. The optical distance to the 
object is the tangential length of the path, 
which is equal to the difference between 
the present R4 radius and the R4(0) radius as 
it was when the light was emitted. For ex-
ample, the light emitted at R4 = 0.17 in the 
drawing is redshifted by z = 5 after travel-

ing the distance D = (1−0.17)R0 in expand-
ing space. 
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the length of the 4-radius at the time of the emission of the light is a(te) = a(R0–D), where 
D is the optical distance of the emitting object. Substituting the DU values of a(tr) and 
a(te) into equation (6.1.2:12) gives 
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a t R D D R
= − = − =

− −
 (6.1.2:13) 

which is the same result as that given in equation (6.1.2:5) as the result of a more elabo-
rate derivation. 

A present estimate 73 for the value of the Hubble constant is H0 = 70.5 ±1.3 
[(km/s)/Mpc], which corresponds to a Hubble radius (equal to R0 in the DU) of about 14 
billion light years and corresponds to about 9.3 billion years from the singularity. 

Recession velocity of cosmological objects 

The physical recession velocity of an object as it is at the time of the observation can 
be expressed in terms of the distance angle θ and the present velocity of light in accord-
ance with equation (3.3.4:2) as 

0recv θc=  (6.1.2:14) 

The value of θ can be determined from the redshift z and the optical distance D in ac-
cordance with equations (6.1.2:1) and (6.1.2:3) as 
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which gives the actual recession velocity at the time of the observation as 
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The recession velocity we observe is the optical recession velocity, which is the veloci-
ty at which the optical distance increases  
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where equation (6.1.2:4) has been substituted for D.  
The curves in Figure 6.1.2-4 summarize the different definitions of the recession ve-

locity as a function of the redshift. The discussion of the redshift above excluded the ef-
fects of the local gravitational environment and any local motions of the object and the 
observer.  

Effects of local motion and gravitation on redshift 

The effect of the gravitational state and the local motion of source A and the receiver 
B on the wavelength of source A observed at B can be derived from equation (5.2.3:23) 
into the form 
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Equation (6.1.2:18) does not take into account the redshift due to the expansion of 

space. The redshift of wavelength from source A at distance D from observer B due to 
the expansion of space (6.1.2:5) is  
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λ
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−
 (6.1.2:19) 

Substitution of D/R4 solved from (6.1.2:17) into (6.1.2:5) gives the redshift as the 
function of the optical recession velocity as 
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where βopt = vopt/c. The wavelength of equal sources is conserved in the course of the ex-
pansion, i.e. λB = λA. Accordingly, the effect of expansion on the wavelength can be ex-
pressed in terms of the optical recession velocity as  
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 (6.1.2:21) 

Combining the effects due to local gravitational states and motions of the source and 
the receiver in equations (6.1.2:18) and (6.1.2:21) we get 
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 (6.1.2:22) 

Equation (6.1.2:22) shows that the effect of the optical recession velocity is equal to 
the effect of the Doppler shift due to the recession velocity of the observer.   

Figure 6.2.1-4. The curves show the 
development of recession velocities as 
function of the redshift. The optical 
velocity, the velocity of the lengthen-
ing of the optical distance, never ex-
ceeds the velocity of light at the time 
of the observation but approaches it 
asymptotically with the increasing 
redshift.  
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The Doppler effect due to local orbital motion results in both recessive and approach-
ing velocity components, which appear as a broadening of spectral lines in the signal re-

ceived. Typically, the value of the Doppler term is of the form 1±Δ, where Δ ≪ 1, 
whereas the redshift 1+z due to the expansion is always larger than 1. The Doppler term 
may be determining for objects at low distance, which allows blueshift instead of redshift, 
Fig 6.1.2-5. 

6.1.3 Light propagation time in expanding space 

In the Dynamic Universe, the velocity of light slows down with the expansion of 
space. Light observed from distant objects has propagated at a velocity higher than the 
velocity of light at the time of arrival. Because the velocity of light follows the velocity of 
space in the direction of the 4-radius, the optical distance (the distance the light travels) of 
an object is equal to the increase of the 4-radius during the light travel time [see equation 
(6.1.2:1)]. The length of the present 4-radius of space, R4, as a function of time from the 
singularity is given in equation (3.3.3:7) which can be solved for t as 
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=  (6.1.3:1) 

The time required for R4 to grow from value R4(0) to its present value R4 is 
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 (6.1.3:2) 

Observer, reference 

Erest(A) 

Emitting object 

Erest(B) 

Figure 6.1.2-5. When the rest energy of an emitting object is higher than that of the reference in 
the observer’s energy environment, a blueshift component is added to the observation. For ob-
jects at high distances the effect of the energy state of the source is generally orders of magnitude 
smaller than the redshift due to the expansion of space. 
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where c0 is the velocity of light at radius R0. Substitution of equation (6.1.2:5) for the ratio 
R4(0)/R4 in equation (6.1.3:2) gives the light propagation time from an object at R4(0) to the 
observer at R4 in terms of the redshift as 
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 (6.1.3:3) 

where H0 is the Hubble constant (6.1.2:11). For low redshifts (z ≪ 1), equation (6.1.3:3) 
can be developed into the form  
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 (6.1.3:4)  

where the term (1+z)3/2 in the numerator is approximated with the first order term of a 
serial expansion. 

Application of the velocity of light at the time of observation to the optical distance D 
of the object [see equation (6.1.3:7)] produces an apparent propagation time  
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 (6.1.3:5) 

By combining equations (6.1.3:4) and (6.1.3:5), the real propagation time ΔT can be 
expressed in terms of the apparent propagation time as 
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which applies for z ≪ 1. In the last two forms of equation (6.1.3:6), the redshift is ex-
pressed in terms of the optical distance and the 4-radius R0. Based on equation (6.1.3:6), 
we can define an effective propagation velocity of light (the average velocity of light) 
based on the local velocity of light at the time of the observation 

( )1effc c z +  (6.1.3:7) 

The effective velocity of light ceff includes the effect of the slowing velocity of light 

during propagation from an object with redshift z (z ≪ 1). 

The effect of the local structure of space 

The local structure of space is known at a certain level within the Milky Way gravita-
tional frame. The propagation time of light from a stellar object in the Milky Way gravita-
tional system can be calculated from equation (5.5.1:1), which, by including the correction 
in equation (6.1.3:7), takes into account the change in the velocity of light during propa-
gation 
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In equation (6.1.3:8) the velocity of propagation ck is the velocity of light in the Milky 
way gravitational frame at the time of the observation. Velocities βj,B(r) are the velocities of 
the solar frame in the Milky Way frame, the velocity of the Earth in the solar frame, and 
the rotational velocity of the observer in the Earth gravitational frame. 

In the case of stellar objects in the Milky Way or extragalactic space, the distance rAB(t0) 
is known only through the magnitude or the redshift information, which is mixed with 
the Doppler shift and the gravitational shift of the frequency resulting from the gravita-
tional environment of the object observed. In the case of continuous monitoring of the 
propagation times, such as in the observation of pulsar frequencies, the propagation time 
is subject to the effects the daily and annual changes in observation distance due to the 
orbital motion and rotation of the Earth.  

The distance variation due to the observer’s motion relative to the propagation frame 
is known as the Roemer delay, known from the 18th century from observations of the 
moons of Jupiter. The Roemer delay for pulsars far from the solar system can be calculat-
ed from the difference in the length of signal path relative to the solar barycenter.  
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where distance rSB–O is the distance from the solar barycenter to the observatory given as 
the sum of its components, rSB–S as the distance from the solar system barycenter to the 
center of Sun, rS–E from the center of the Sun to the center of the Earth, and rE–O from 

the center of the Earth to the observatory. The vector 
P̂ O−

r  in equation (6.1.3:9) is the 

unit vector in the direction of the signal path from the pulsar to the observatory. In prin-
ciple, the signal time in equation (6.1.3:9) should also include the effect of the change in 
distance due to the motion of the solar gravitational frame.  

In a precise calculation, the velocity cE(S) must be chosen as the velocity of light at 
Earth’s location in the solar gravitational frame in order to include the Shapiro delay 
[equation 5.4.1:23)] in the solar gravitational frame, which becomes observable when the 
signal path passes the Sun at a small distance 

( )
3

0

Δ 2ln cot cot cos cos
2 2

E S P S
P E E S P S

δ

β βGM
T β β

c

− −
− − −

  
= − +  

  
 (6.1.3:10) 

where 

 Earth  Sun 

  pulsar  Sun
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β
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−

−

=

=
 (6.1.3:11) 

There is a minor difference in the Shapiro delay between the DU and GR (see Section 
5.3). The classical Roemer delay is natural part of the DU framework; in prevailing prac-
tice, it is added as a separate correction to the predictions of general relativity. 
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6.2 Angular sizes of a standard rod and expanding objects 

6.2.1 Angular size of a standard rod in FLRW space 

In FLRW space both solid objects and gravitationally bound local systems like galaxies 
and quasars are assumed to conserve their dimensions in the course of the expansion of 
space. Accordingly, in FLRW space practically all observed objects can be regarded as 
standard rods. The prediction for the angular size of standard rod ds in FLRW space is 74 
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which is based on the angular diameter distance DA. Angular diameter distance is related 
to co-moving distance DM (or proper motion distance) in FLRW space 
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where RH = c/H0 is referred to as Hubble radius, which corresponds to R0 in the DU. 
As shown by (6.2.1:2) the angular diameter distance DA turns to a decreasing trend at 

redshifts above z > 3 resulting in an increasing angular size. 

6.2.2 Angular size of a standard rod in DU space 

The standard rod is a hypothetical celestial object that conservers its dimensions in the 
course of the expansion of space. In DU space, solid objects like stars may be regarded as 
standard rods. 

Radiation from an object A(z) at a distance angle θ from the observer is seen at its ap-
parent location A’(z), at distance D redshifted by  
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= − =
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 (6.2.2:1) 

where R0 is the 4-radius of space at the time of observation, Figure 6.2.2-1. As given in 
equation (6.1.2:6) the optical distance D is 
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+
 (6.2.2:2) 

The optical angle or angular size ψr(s) subtended by a standard rod can be expressed as 
the ratio of the length of the rod ds and the optical distance D 
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Figure 6.2.2-1. (a) Propagation of light in expanding spherically closed space. The apparent line of 
sight is the straight tangential line. The distance to the apparent source location A’(z) is at the op-
tical distance D = R(observation) – R(emission) along the apparent line of sight. (b) The symmetry of expan-
sion in the three space dimensions and in the fourth dimension makes the observed optical angle 
ψr(s) of the apparent source A’(z) equal to the optical angle of a hypothetical image A"(z) at distance 
D in the direction of the R0 radius. 

or, when normalized to (rs/R0), as 
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+
=  (6.2.2:4) 

Expression of the optical angle ψr(s) as the ratio ds/D assumes symmetry of expansion 
for light front elements dVλ propagating in the optical path 

Δ ΔλdV λ A=   (6.2.2:5) 

At redshifts z < 0.1, the observation angle of the standard rod ψDU follows the Euclid-
ean 1/z dependence. At high redshifts, the normalized observation angle approaches 

ψDU/(ds/R4) = ψDU/θr(s)  1. 

6.2.3 Angular size of expanding objects in DU space 

As a major difference to FLRW cosmology, all gravitationally bound systems like gal-
axies and quasars are expanding objects in the DU framework. The angular diameter of 
an expanding object in DU space can be expressed 
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where dR is the diameter of the object at the time of observation. Substitution of d(z) in 
(6.2.3:1) for ds in (6.2.2:3) gives the angular size of an expanding objects 
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Figure 6.2.3-1. Angular diameter of objects as the function of redshift in FLRW space and in DU 
space.  
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where the ratio dR/R0 = θd means the angular size of the expanding object as seen from 
the barycenter of space. Equation (6.2.3:2) implies a Euclidean appearance of expanding 
objects in space. A comparison of equations (6.2.1:2), (6.2.2:4), and (6.2.3:2) is given in 
Figure 6.2.3-1.  

The DU prediction for solid objects (standard rod) approaches asymptotically to the 
angular size of the object as it would appear from the barycenter of space (i.e. from M").  

It can be concluded that an essential factor in the Euclidean appearance of galaxy 
space in the DU is the linkage of the gravitational energies of local systems to the gravita-
tional energy in whole space. Such a linkage is missing in the GR based FLRW cosmology 
due to the local nature of the general relativity.  

In Figure 6.2.3-2 the DU prediction (6.2.3:2) and the FLRW prediction (6.2.1:2) are 
compared to observations of the Largest Angular Size (LAS) of galaxies and quasars in 
the redshift range 0.001 < z < 3 54.  

In figure 6.2.3-2 (a) the observation data is set between two Euclidean lines of the DU 
prediction in equation (6.2.3:2). The FLRW prediction is calculated for the conventional 
Einstein de Sitter case (Ωm=1 and ΩΛ=0) shown by the solid curve, and for the recently 
preferred case with a share of dark energy included as Ωm=0.27 and ΩΛ =0.73 (dashed 
curves). Both FLRW predictions deviate significantly from the Euclidean lines in (a) that 
enclose the set of data uniformly in the whole redshift range. As shown in figure 6.2.3-2 
(b) the effect of the dark energy contribution on the FLRW prediction of the angular size 
is quite marginal.  
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Figure 6.2.3-2. Dataset of the observed Largest Angular Size (LAS) of quasars and galaxies in the 
redshift range 0.001 < z < 3. Open circles are galaxies, filled circles are quasars. In (a) observations 
are compared with the DU prediction (6.2.3:2). In (b) observations are compared with the FLRW 
prediction (6.2.1:2) with Ωm= 0 and ΩΛ = 0 (solid curves), and Ωm= 0.27 and ΩΛ= 0.73 (dashed 
curves). 
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6.3 Magnitude and surface brightness 

6.3.1 Luminosity distance and magnitude in FLRW space 

In the classical Euclidean space, radiation flux F from a spherically symmetric source 
is assumed to be diluted in proportion to the square of distance  
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A πd

 
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 (6.3.1:1) 

where L [W] is the luminosity of the radiation source. Applying (6.3.1:1), the classical def-
inition of apparent magnitude becomes 
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where the constant M is the absolute magnitude, which is the observed magnitude of the 
object as it would be at 10 parsec distance from the observer. Using the reference dis-
tance D0 = 10 pc, equation (6.3.1:2) can be rewritten into the form 

05 log 5 log L

H H

D D
m M

R R
= − +  (6.3.1:3) 

where D = DL, is the luminosity distance and RH is the Hubble radius. 
The luminosity distance DL in FLRW cosmology is 
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where DA is the angular size distance given in (6.2.1:2). The ratio (1+z)2 between DL and 
DA means that in FLRW space, the classical distance dilution of radiation that is propor-
tional to DA

2 is further diluted by factor (1+z)4 due to expansion  
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 (6.3.1:5) 

As first proposed by Tolman 47 and later concluded by Hubble and Humason 52, de 
Sitter 50, and Robertson 51, the energy of a quantum is reduced by (1+z) as a consequence 
of the effect of Planck’s equation E = hf as an “energy effect”, a reduction of the “inten-
sity of the radiation” due to reduced frequency. When receiving the redshifted radiation at 
a lowered frequency, a second (1+z) factor was assumed as a “number effect”. Hubble 
considered that the latter is relevant only in the case that the redshift is due to recession 
velocity 49. The double dilution (1+z)2 due to redshift has stayed in the FLRW cosmology 
since the early work in 1930’s 53.  

In the power density in (6.3.1:5), the other (1+z)2 factor is referred to as “aberration 
factor” or reciprocity effect based on the analysis of distances in general relativity by 
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Tolman in 1930 47 and Etherington in 1933 75. The magnitude prediction based on lumi-
nosity distance DL in FLRW cosmology assumes reduction of the observed power densi-
ties to power densities in “emitter’s rest frame” — the prediction is compared to observa-
tions corrected with the K-correction, which in addition to correction of instrumental fac-
tors, cancels the reciprocity factor by adding a (1+z)2 attenuation factor to the power 
densities observed in bolometric multi bandpass photometry (see Section 6.3.3).  

The prediction for K-corrected magnitudes in FLRW cosmology is given by the equa-
tion 
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where D0 = 10 pc is the distance of the reference object.  

6.3.2 Magnitude of standard candle in DU space 

Conservation of the mass equivalence of radiation in DU space negates the basis for 
an “energy effect” as a violation of the conservation of energy. An analysis of the linkage 
between Planck’s equation and Maxwell’s equations shows that Planck’s equation de-
scribes the energy conversion at the emission of electromagnetic radiation. Redshift should 
be understood as dilution of the energy density due to an increase in the wavelength in the direction 
of propagation, not as losing of energy. Accordingly, the observed energy flux F = Eλ f is 
subject only to a single (1+z) dilution factor, the “number effect” in the historical terms 
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where λe is the wavelength at the emission of the radiation. The emission wavelength of 
characteristic radiation from atomic emitters is constant in the course of the expansion of 
space. Accordingly, the reference flux of characteristic radiation from a reference source 
at the time and location the redshifted radiation is received is (λe(ref) = λe ) 
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Relative to the reference flux with zero redshift, the power density in the redshifted 
flux is 
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Equation (6.3.2:3) gives the dilution due to redshift but ignores the areal dilution relat-
ed to the optical distance of the source. When the redshifted radiation is received from a 
source at distance D from the reference source the observed energy flux is  
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where L is the luminosity of the source. Related to the flux density Fe(ref) from a reference 

source with the same luminosity at distance d0 (z  0) the energy flux is 
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Substitution of equation (6.2.2:2) for D in (6.3.2:5) gives 
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which corresponds to the apparent magnitude 
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Equation (6.3.2:7) applies for the bolometric energy flux observed for radiation from a 

source at optical distance D = R0z /(1+z) from the observer in DU space. In equation 
(6.3.2:7), possible effects of galactic extinction, spectral distortion in Earth atmosphere, 
or effects due to the local motion and gravitational environment of the source and the 
receiver are included in Kinstr.  

6.3.3 Bolometric magnitudes in multi bandpass detection 

For analyzing the detection of bolometric flux densities and magnitudes by multi 
bandpass photometry the source radiation is assumed to have the spectrum of blackbody 
radiation. The bandpass system applied consists of a set of UBVIZYJHK filters approx-
imated with transmissions curves of the form of normal distribution 
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where λC(X) is the peak wavelength of filter X, ΔλX the half width of the filter, 
WX = ΔλX/λC(X) the relative width, and σ½ = 2.35481 is half width deviation of the nor-
mal distribution, Figure 6.3.3-1.  

For the numerical calculation of the energy flux from a blackbody source, equation 

(A.2:10) in Appendix 1 is rewritten for a relative wavelength differential dλz/λz = dλ/λ ≪ 
WX : 
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 (6.3.3:2) 
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Figure 6.3.3-1. The effect of redshift z = 0…2 (shown in steps of 0.2) on the energy flux density 

per relative bandwidth of the blackbody radiation spectrum from a T = 6600 K blackbody source 
corresponding to λT = 440 nm and λW = 557 nm (solid curves). Transmission curves of UB-
VRIZYJHK filters listed in the table are shown with dashed lines. The half widths of the filters 
follow the widths of standard filters in the Johnson system. All transmission curves are approxi-
mated with a normal distribution. The horizontal axis shows the wavelength in nanometers in a 
logarithmic scale.  

Equation (6.3.3:2) excludes the areal dilution due to the distance from the source to 
the observer. Integration of (6.3.3:2) gives the bolometric radiation  

( )0

0
1

bol zz

bol

z

Fdλ
F F

λ z


= 

= = 
  + 

  (6.3.3:3) 

Equation (6.3.3:2) excludes the areal dilution due to the distance from the source to 
the observer. Integration of (6.3.3:2) gives the bolometric radiation  
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The transmission through filter X, normalized to the bolometric flux by applying 
equation (A2:12), can now be calculated by applying the transmission function of equa-
tion (6.3.3:1) to the flux in (6.3.3:2) 
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which gives the flux observed through filter X as a function of the redshift of the radia-
tion, Figure 6.3.3-2. 
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The energy flux of equation (6.3.3:4) from sources at a small distance d0 (zdo  0) and 

at distance D (zD > 0) are related by 
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Substitution of equation (6.2.2:2) for D and equation (6.3.3:4) for FX(D) and FX0(do) in 
(6.3.3:5) gives the radiation power observed in filters X and X0 from standard sources at 
distances D and d0, respectively 
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 (6.3.3:6) 

By denoting the integrals in the numerator and denominator in (6.3.3:6) by IX(D) and 
IX0(do), respectively, energy flux FX(D) can be expressed 
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Choosing d0 = 10 pc, the apparent magnitude for flux through filter X at distance D 
can be expressed as 
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 (6.3.3:8) 
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Figure 6.3.3-2. Transmission 
curves obtained by numerical 
integration of (6.3.3:4) for fil-
ters UBVRIZJ for radiation in 
the redshift range z = 0…2 
from a blackbody with λT = 
350 nm (λW = 440 nm, T = 

8300 K). Each curve touches 
the bolometric curve of equa-
tion (6.3.3:3) at the redshift 
matching maximum of the 
radiation flux to the nominal 
wavelength λW of the filter 
(small circles in the figure). 
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where M is the absolute magnitude of the reference source at distance 10 pc. 

For R4 = 14109 l.y., consistent with Hubble constant H0 = 70 [(km/s)/Mpc], the nu-

merical value of the second term in (6.3.3:8) is 5log(R4/10pc) = 43.16 magnitude units. 

For Ia supernovae the numerical value for the absolute magnitude is about M  19.5.  
When filter X is chosen to match λC(X) =λW(1+z) and λC(X0) = λW  [or λC(X) = λT (1+z) 

and λC(X0) = λT, the integrals IX(D) and IX0(do) are related as the relative bandwidths   

( )

( )

00 0X d X

XX D

I W

I W
=  (6.3.3:9) 

which means that for optimally chosen filters with equal relative widths the last term in 
equation (6.3.3:8) is zero and equation (6.3.3:8) obtains the form of equation (6.3.4:10) for 
bolometric energy flux 
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Figures 6.3.3-3 (a,b) illustrate the magnitudes calculated for filters X = B, V, R, I, Z, J 
from equation (6.3.3:8) in the redshift range z = 0…2. Each curve touches the solid curve 
of equation (6.3.3:10) corresponding to the bolometric magnitude obtainable with opti-
mal filters at each redshift in the redshift range studied.  

In Figure 6.3.3-3(c), the predictions are compared to magnitudes collected from Table 
7 in by Tonry et al. 55. The magnitudes given by Tonry et.al. are values that a “normal” SN 
Ia might achieve at maximum, derived from the colors of SN 1995D at maximum and the 
spectral energy distribution of SN 1994S.   

6.3.4 K-corrected magnitudes 

In the observation praxis based on the Standard Cosmology Model, direct observa-
tions of magnitudes in the bandpass filters are treated with the K-correction, which corrects 
the filter mismatch and converts the observed magnitude to the “emitter’s rest frame” 
presented by observations in a bandpass matched to a low redshift reference of the ob-
jects studied. The K-correction for observations in the Xj band relative to the rest frame ref-
erence in the Xi band is defined 76 as 
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 (6.3.4:1) 

In the case of a blackbody source and filters with transmission functions described by 
a normal distribution, equation (6.3.4:1) can be expressed by substituting equation 
(6.3.3:2) for the energy flux integrals, equation (6.3.3:1) for the transmission curves of the 
filters, and the relative bandwidths of filters i and j for the transmission integrals 
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Figure 6.3.3-3 (a) The magnitudes predicted by (6.3.3:8) for filters BVRIZJ as functions of redshift 
are shown as the families of curves drawn with dashed line (see Appendix 1 for the definitions of 
λT and λW characterizing blackbody radiation). The transmission functions of the filters used by 
Tonry et al. 55, Table 7] are slightly different from the transmission functions used in calculations 
for (a) and (b). The DU prediction (6.3.3:10) for the magnitudes in optimally chosen filters is 
shown by the solid DU curve in each figure. 
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 (6.3.4:2) 

where the relative differential dλ /λ of (6.3.3:2) is replaced by differential dλ to meet the 
definition of (6.3.4:1).  

Figure 6.3.4-1 (a) illustrates the KBX-corrections calculated for radiation from a black-

body source with λT = 440 nm equivalent to 6600 K blackbody temperature. An optimal 
choice of filters, matching the central wavelength of the filter to the wavelength of the 
maximum of redshifted radiation, leads to the K-correction 

( ) ( )5log 1K z z +  (6.3.4:3) 

The K-correction of (6.3.4:3) gives an accuracy of better than 0.1 magnitude units in 
the whole range of redshifts covered with the set of filters used. The difference between 
the K-corrections in equation (6.3.4:2) and (6.3.4:3) is presented in Figure 6.3.4-1(b). 

Substitution of (6.3.4:3) for K in equation (6.3.2:7) gives the DU space prediction for 
K-corrected magnitudes 

  
Figure 6.3.4-1. (a) KBX-corrections (in magnitude units) according to (6.3.4:2) for the B band as the 
reference frame, calculated in the redshift range z = 0…2 for radiation from a blackbody source 

with λT =440 nm equivalent to 6600 K blackbody temperature. All of the KBX-correction curves 

touch the solid K(z) curve, which shows the K(z) = 5log(1+z) function. (b) The difference KBX –
K(z). With an optimal choice of filters, the difference KBX –K(z) is smaller than 0.05 magnitude 
units in the whole range of redshifts z = 0…2 covered by the set of filters B…J demonstrating the 
bolometric detection with optimally chosen filters. 
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The prediction for K-corrected magnitudes in the standard model is given by the equa-
tion   
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where RH = c/H0  14109 l.y. is the Hubble radius, the standard model replacement of R4 
in DU space, and DL is the the luminosity distance defined in equation (6.3.1:4). Mass 
density parameters Ωm and ΩΛ give the density shares of mass and dark energy in space. 
For a flat space condition, the sum Ωm + ΩΛ = 1.  

The best fit of equation (6.3.4:5) to the K-corrected magnitudes of Ia supernova ob-
servations has been obtained with Ωm = 0.26 … 0.31 and ΩΛ = 0.74…0.69 
55,77,78,79,80,81,82,83,84 . Figure 6.3.4-2 shows a comparison of the prediction given by equation 

(6.3.4:5) with Ωm  0.31, ΩΛ  0.69, and H0 = 64.3 used by Riess et al. 79 and the DU 
space prediction for K-corrected magnitudes in equation (6.3.4:4).  

 
Figure 6.3.4-2.  Distance modulus μ = m – M, vs. redshift for Riess et al.’s gold dataset and the 
data from the HST. The triangles represent data obtained via ground-based observations, and the 
circles represent data obtained by the HST 79. The optimum fit for the standard cosmology predic-
tion (6.3.4:5) is shown by the dashed curve, and the fit for the DU prediction (6.3.4:4) is shown, 
slightly below, by the solid curve 85. 
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In the redshift range z = 0…2 the apparent magnitude of equation (6.3.4:5) coincides 

accurately with the magnitudes of equation (6.3.4:4). The K-corrections used by Riess et 

al. 79, Table 2, follow the K(z) = 5log(1+z) prediction of equation (6.3.4:3) as illustrated 
in Figure 6.3.4-3. 

 
Figure 6.3.4-4. Distance modulus μ = m – M, vs. redshift for Riess et al. “high-confidence” dataset 
and the data from the HST, presented on a logarithmic scale. 
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matched to redshifted spectra (see Fig. 6.3.4-1) and ap-
plied in equation (6.3.4:4) for the DU prediction for K 
corrected apparent magnitude. 
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Figure 6.3.4-5. Comparison of predictions for the K-corrected apparent magnitude of standard 
sources in the redshift range 0.01...1000 given by the Standard Cosmology Model with 
Ωm=0.3/ΩΛ=0.7 and Ωm=1/ΩΛ=0 according to equation (6.3.4:5), and DU space given by equa-
tion (6.3.4:4). In each curve the absolute magnitude used is M = –19.5. The Ωm=0.3/ΩΛ=0.7 pre-

diction follows the DU prediction closely up to redshift z  2, the Ωm=1/ΩΛ=0 prediction of the 
standard model shows remarkable deviation even at smaller redshifts. 

Figure 6.3.4-4 converts the data and the predictions in Figure 6.3.4-2 to logarithmic 
scale. At redshifts above z > 2 the difference between the two predictions, (6.3.4:4) and 
(6.3.4:5), becomes noticeable and grows up to several magnitude units at z > 10, Figure 
6.3.4-5. For comparison, Figure 6.3.4-5 shows also the standard model prediction for Ωm 
= 1 and ΩΛ = 0. 

As demonstrated by the FLRW curve calculated for Ωm=0.3/Ω=0.7, the effect of the 
dark energy appears as a buildup of certain S-shape in the magnitude/redshift curve in 
the redshift range 0.1 < z <10; at redshifts below 0.1 the effect of the assumed dark ener-
gy is negligible and the curve is parallel to the curve without dark energy. At redshifts 
higher that 10 the dark energy curve, again becomes parallel to the FLRW curve calculat-
ed without dark energy. 

6.3.5 Time delay of bursts 

Thermal transients, such as explosions related to a particular energy environment, can 
be assumed to emit the same number of quanta at any state of the cosmic expansion. As a 
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conclusion, not only the number of quanta emitted in parallel at each phase of the transi-
ent but also the number of quanta emitted in sequence is independent of the stage of the 
cosmic expansion. 

The time required to receive a sequence of n cycles of radiation with a particular wave-
length, is 

( )
0

λ r λ r

r nλ

n λ χn λ
T

c c
= =  (6.3.5:1) 

Applying equation (6.1.2:5), the wavelength received can be related to the redshift and 
the emitted wavelength (with zero redshift) as  

( )1r eλ z λ= +  (6.3.5:2) 

Substitution of equation (6.3.5:2) into equation (6.3.5:1) gives  
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where T(r)nλ(e) is the time required to receive a burst of n cycles of radiation at wavelength 
λr = λe with zero redshift. A supernova explosion is regarded as a standard candle emitting 
a characteristic number of quanta. The stretching of supernova explosions and also gam-
ma bursts according to equation (6.3.5:3) is supported by observations 86,87. In the stand-
ard model, the lengthening of radiation bursts from distant objects is referred to as cos-
mological time dilation. 

6.3.6 Surface brightness of expanding objects 

The Tolman test 47,50,75 is considered as a critical test for an expanding universe model. 
In expanding space, according to Tolman’s prediction, the observed surface brightness of 
standard objects decreases by the factor (1+z)4 with the redshift. Following the properties 
of FLRW space, Tolman’s prediction assumes that galaxies and quasars are non-
expanding objects. In DU space, galaxies and quasars are expanding objects. With refer-
ence to equation (6.2.3:2) the angular area of spherical expanding objects with diameter ds 
= ds0/(1+z) is 
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Applying (6.3.2:6) for the power density the surface brightness of an object at distance 

D relates to the surface brightness of a reference object at distance D0 (zdo≪ 1, ΩD0 = 
r0/4D0

2
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or  
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When related to the K-corrected power densities in a multi bandpass photometry with 
nominal filter wavelengths matched to the redshifted radiation (6.3.6:3) is converted into  
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The predictions of equations (6.3.6:3) and (6.3.6:4) do not include the effects of possi-
ble evolutionary factors.  
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6.4 Observations in distant space 

6.4.1 Microwave background radiation  

The bolometric energy density of cosmic microwave background (CMB) radiation, 

4.210–14 [J/m3], corresponds, with a high accuracy, to the energy density in a blackbody 

cavity at 2.725 K. The rest energy calculated for the total mass in space is Erest = MΣc 2  

21070 [J] corresponding to energy density Erest /(2π 2R4
3 ) = 4.610–10 [J/m3 ] in DU space. 

Accordingly, the share of the CMB energy density of the total energy density in space is 
about 10–4.  

According to the FLRW cosmology, the CMB is the afterglow of the hot early stage 
of the universe about 380,000 years after the Big Bang. In the standard cosmology model, 
the Planck constant is interpreted as an attribute of radiation, rather than an attribute of 
the emission/absorption process. As a consequence, standard cosmology concludes that 
the energy density of blackbody radiation, like any electromagnetic radiation dilutes in 
inverse proportion to a factor (1+z )4, while the volume of space expands in proportion 
to the factor (1+z )3. This means that, according to the standard interpretation, the radia-
tion loses energy due to the expansion of space (without assuming absorption losses). In 
the case of CMB, with redshift z ≈ 1000, the loss of energy due to the expansion of space 
would be about 1000 times the present CMB energy, which means the disappearance of 
about 10% of the total energy in space. 

As discussed in Section 1.1.2 and analyzed in detail in Section 5.1.1, the Planck equa-
tion is interpreted as describing the emission/absorption process rather than an intrinsic 
property of radiation propagating in space. Such an interpretation conserves the mass 
equivalence of radiation but results in a reduction in the energy density due to the in-
crease of the wavelength with the increasing volume. Accordingly, the energy density of 
blackbody radiation, like the energy density of any electromagnetic radiation, deceases in 
inverse proportion to the increase of volume in expanding space, which conserves the 
total mass and the overall energy balance in space. The energy density of radiation in a 
blackbody cavity is given in Appendix 1, equation (A1:7), as the energy density of a cycle 
of radiation at wavelength λT, corresponding to the temperature T as defined in equation 
(A1:1). The energy density in a blackbody cavity at the temperature T is 
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  (6.4.1:1) 

where the quantity h0/λT is the unit mass equivalence of a cycle of radiation at the wave-
length λT. Conserving the mass equivalence, the energy density of blackbody radiation 
redshifted by the factor (1+z ) is 
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which is by the factor (1+z ) higher that the energy density of radiation in a blackbody 
cavity at the temperature T(z) = T/(1+z ) 
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where λT(z ) is  

( ) ( )1TT z
λ λ z= +  (6.4.1:4) 

The energy density of CMB radiation is equal to the nominal energy density of radia-

tion in a blackbody cavity at 2.725 K, which suggests a continuous presence of a balanc-
ing blackbody substance in space. 

6.4.2 Double image of an object 

Because of spherical symmetry, uniform radiation from all space directions can also be 

received from objects at an angle n180 relative to the observer. Applying the 180 
transmission to the background radiation, we get 

 ( )
64

44 180
6 10

23.1

π R
R R e−= =     (l.y.) (6.4.2:1) 

Radiation from an object at exactly the opposite side of spherical space has redshift  

1 22.14π

πz e= − =  (6.4.2:2) 

which means an infrared peak in the background radiation. Considering the galaxy density 

in space, the probability that there is a luminous object exactly at 180 angular distance, 
however, is small. 

It can further be concluded that an object located close to the 180 angular distance 
may be visible in opposite directions with different redshifts, Figure 6.4.2-1. 

 

A(R4) 

B(R4(1)) 

P1 P2 

B(R4(2)) 

 
Figure 6.4.2-1. Light emitted by object B when 
the 4-radius of space R4(1) reaches the observer 
at A(R4) through path P1. Light emitted by 
object B at R4(2) reaches the observer through 
path P2 which appears in the direction oppo-
site to P1. The opposite images show the op-
posite faces of the object. 
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As can be seen from Figure 6.4.2-1, the light emitted from object B at states B(R4(1)) 
and B(R4(2)) may be observed at object A(R4) through light paths P1 and P2, respectively. 
The corresponding redshifts are 

( ) ( )2

1 1 1
π θ

z P e
−

= −  (6.4.2:3) 

and 

( )2 2 1θz P e= −  (6.4.2:4) 

Note that the radiation observed through the longer path originates from an earlier 
stage of the object. 

6.4.3 Radiometric dating 

We can assume that the rate of nuclear decay processes is proportional to the rest 
momentum of the decaying object, which on a cosmological scale is a function of the 
time, T, since singularity (3.3.3.8) 
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where 0 is the time constant of the decay at T0, when the decay was started. Beginning at 
T0, the decay rate decreases in proportion to (T/T0)1/3, Figure 6.4.3-1, which means a cor-

responding increase in the decay time constant   
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 (6.4.3:2) 

In radiometric dating, a decreasing decay rate means shortening of the estimated ages 
obtained with data based on a constant decay rate.  
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Figure 6.4.3-1. Development of the 
nuclear decay rate R with time 
from singularity. At present, 

t  9.3109 years, the decay rate is 
about half of the decay rate at 

t = 1109 years. The reduction of 
the decay rate has a major effect on 
the determination of ages of ob-
jects existing billions of years ago.  
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In the case of a constant decay rate, as assumed in radiometric dating, the decrease of 
decaying nuclei is expressed as 

( ) 0

t τN t N e−=  (6.4.3:3) 

where τ is the time constant of the decay.  
The decay time t is  

( )
0
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N

t T T τ
N T

= − =  (6.4.3:4) 

where the decay process was started at time T0, when the number of decaying nuclei is 
N0.  

In the case of decreasing decay rate (6.4.3:2), the decrease of decaying nuclei is ex-
pressed  

( )
( )

0

1 3 1 3
2 3 2 30 0 0

01 3

0 0

3
ln

2

T

T

N T TdT
T T

N T τ T τ
= = −  (6.4.3:5) 

Substitution of (6.4.3:2) for τ0 in (6.4.3:5) gives N(T) in form 
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and 
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Time T in equations (6.4.3:5–7) means the time since singularity to the time of observ-

ing the N(T)/N0 ratio. Today, T  9.3 billion years. For decay times t =T–T0 ≪T, equa-
tion (6.4.3:7) can be written in the form 
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and further as 
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For t ≪ T0, (6.4.3:9) is equal to (6.4.3:4) 
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which is equal to equation (6.4.3:4) for constant decay rate in the standard model, Figure 
6.4.3-2. 
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Figure 6.4.3-2. Accumulation of decay 
products according to the standard model 
with a constant decay rate and the DU 
model with a decreasing decay rate.  



 

 

7. Summary 

7.1 The picture of reality behind theory and experiments  

The relativistic reality 

We may say that the need for the rethinking of Newtonian space in late 19th century 
arose primarily from philosophical problems in combining the local and the global. Max-
well’s theory of electromagnetism suggested global world ether for the propagation of 
electromagnetic radiation. The 19th century experimental efforts, however, failed in show-
ing the existence of world ether. The approach adopted to solve the problem was the 
modification of the Galilean transformation, which meant rejection of absolute time and 
distance, and de-linearization of Newton’s second law. The choice was encouraged by 
observations on mass increase of electrons in fast motion.  

In contemporary physics, the “relativistic” mass is a consequence of velocity. In the DU framework, 
the increased mass of a moving object is due to the mass contribution needed to obtain the motion at con-
stant gravitational potential. In free fall in a gravitational field, the velocity is obtained against a reduction 
of local velocity of light, which means that there is no increase of mass in free fall.  

In the DU framework, the effects of motion and gravitation on clocks, and the observed velocity of 
light are explained as consequences of the conservation of energy. This is a fundamental difference from the 
explanation given by the theory of relativity, which explains the effects in terms of modified coordinate 
quantities, time and distance. 

A further difference between the theory of relativity and the Dynamic Universe is the nature of relativ-
ity. The theory of relativity does not recognize any absolute frame of reference; primarily, relativity appears 
as relativity between on object and the observer. In the DU, the state of rest in hypothetical homogeneous 
space serves as the absolute reference for all energy states in space. Relativity in the DU can be character-
ized as relativity between the local and the whole. 

The velocity of light 

The constancy of the velocity of light is a cornerstone of the theory of relativity. In 
the theory of relativity, the constancy of the velocity of light is established by the postu-
lated relativity principle which fixed the velocity of light to any local frame of reference. 

In the Dynamic Universe, the local velocity of light is linked to the local 4D velocity 
of space which is a function of the local gravitational state. The local 4D velocity is not a 
function of the motion of a local energy frame.  

Discontinuity and discreteness of physical systems 

Since Newton’s laws of mechanics, physical systems were seen as being driven by con-
tinuous processes allowing any amount of mass or any energy state in a system. In spite 
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of the early development of atomic theory as a tool for understanding chemical reactions, 
since John Dalton’s discoveries in the early 19th century, the nature of atoms as discrete 
elements of matter was more or less untouched in physics for the whole century. A step 
towards understanding the nature of atoms as discrete elements in physical systems was 
taken with Ludwig Boltzmann’s kinetic theory of gases and the statistical interpretation of 
the second law of thermodynamics he developed in the late 19th century and the begin-
ning of the 20th century.  

Next piece of the puzzle was Max Planck’s solution of the spectrum of blackbody ra-
diation discussed in Section 5.1.1. The excellent agreement between Planck’s prediction 
and the observed blackbody spectra left no doubts to Planck’s considerations on discrete 
emission–absorption processes behind the energy balance between radiation and the radi-
ating body. Planck’s findings in solving the blackbody radiation were extended to the so-
lution of the specific heat of solids by Albert Einstein in 1906. In fact, inspired by statisti-
cal thermodynamics, Einstein had gone a step further in discreteness by proposing light 
quanta as the solution for the photoelectric effect 1905. It took another 20 years for the 
formulation of quantum mechanics, which tied together the theoretical considerations 
and experimental findings. Quantum mechanics covers a wide range of phenomena and 
works well in practice in spite of the still disputable philosophical basis and limited com-
patibility of quantum mechanics with other branches of physics. 

An essential part of the experimental work behind quantum mechanics comes from 
spectral analysis of matter–radiation interactions. Stationary quantum states are described 
in terms of resonant wave functions, like spherical harmonics in the case of electron 
states in an atom. 

In the Dynamic Universe framework, a quantum of radiation is the energy injected into a cycle of ra-
diation by a single electron transition in the emitter.  

The solution of Planck’s equation from Maxwell’s equations is not tied to any assump-
tion of the Dynamic Universe – the interpretation of quantum as the unit energy injected 
to radiation or absorbed by an absorber is equally valid in contemporary physics frame-
work. In fact, the energy injected by any antenna into a cycle of radiation is proportional 
to frequency. 

Wavenumber, mass and energy 

The linkage of Planck’s equation to Maxwell’s equations links the Planck constant to 
primary electrical constants: unit charge, e and vacuum permeability μ0. 

Further, it reveals the linkage of the Planck constant to the velocity of light and thereby the mass 
equivalence of electromagnetic radiation, and vice versa, the wavelength equivalence of a mass object.   

In the DU framework, the conventional form of the Planck constant is replaced with the intrinsic 
Planck constant, where the linkage to the velocity of light is removed.  

The intrinsic Planck constant, h0 =h/c, has dimensions of mass-distance [kg·m], which 

establishes a direct linkage between mass and wavelength m = h/, or in terms of the 
wavenumber m = ћ·k. 

In the DU framework, mass appears as a wavelike substance for the expression of energy. 
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Table 7.1.1-I. Linkage of mass, rest energy and the critical radius to the Compton wave number k 
in contemporary physic and in the Dynamic Universe. The last form of the critical radius in Dy-
namic Universe illustrates the linkage of the critical radius, rc , related to the local mass m  to the 
total mass M” and the 4-radius of space R”. In contemporary physics, the critical radius is twice 
the critical radius in the DU. The difference comes from the way Newtonian gravitation is used as 
boundary condition in the derivation of critical radius in Schwarzschild space. 

Table 7.1.1-I illustrates the linkage of wavenumber, mass, momentum, rest energy and 
the critical gravitational radius in contemporary physics and the Dynamic Universe. In the 
table, the DU expressions are reduced into the form of their counterparts in contempo-
rary physics. In the DU framework, the expression for wavenumber, mass and all forms 
of energy are primarily expressed as complex functions, which give more information 
about the physical nature of each (see Section 4.1). 

In the DU, localized mass objects are described as resonant mass wave structures. The 
real component of the momentum of a mass object moving in a local frame in space can 
be described as a wave propagating in parallel with the object. The wave number of the 
momentum wave is created as the sum of Doppler shifted front and back waves in the 
moving resonator. Based on the parallel momentum wave, the DU explanation of the 
double slit experiment is given in Section 5.3.5.  

The mass wave in the DU can be seen as a physical replacement of the wave function 
in quantum mechanics. The solution of the hydrogen atom in Section 5.1.4 demonstrates 
the use of the resonant mass wave concept. 
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7.2 Changes in paradigm 

7.2.1 The basic postulates 

We can summarize the main postulates of the Dynamic Universe as follows: 
 

1 Space is defined as the three-dimensional surface of a four-dimensional sphere 
free to contract and expand in an infinite four-dimensional universe.  

2 Time is a universal scalar. The fourth dimension is metric by its nature. 

3 As the initial condition, all mass is homogeneously distributed in space. Total 
mass in space is conserved in all interactions in space. 

4 The dynamics of space is determined by a zero-energy balance of motion and 
gravitation in the structure. 

5 The inherent energy of gravitation is defined in hypothetical homogeneous space; 
the inherent energy of motion is defined in the hypothetical environment at rest. 

6 The buildup of motion, electromagnetic energy, elementary particles, and mass 
centers within space conserves the total energy and the zero-energy balance created 
in the contraction–expansion process of space. 

 
Classically, force and force field are primary quantities and energy is derived by integration 

of force. The prevailing cosmological appearance and structure of space is an extrapola-
tion of local spacetime based on the equivalence principle equating inertial and gravita-
tional accelerations. The prevailing theory does not allow the determination of the total 
energy in space or rely on the conservation of total energy. In FLRW cosmology, due to 
the interpretation of Planck’s equation as an inherent property of radiadiation, the red-
shift of radiation results in a disappearance of energy.  

The postulates in the DU reflect the holistic approach. The total structure of space 
and the inherent expressions of energy are postulated; force is derived as the gradient of ener-
gy. Local structures are derived from the whole by conserving the total energy in space. 
Planck’s equation is interpreted as the energy conversion at the emission of electromag-
netic radiation. As a consequence, the energy of radiation is conserved in the redshift; the 
energy density of radiation is diluted.   

 
The DU approach discards the central postulates of the prevailing theories: 

1. The velocity of light is not postulated as a constant or an invariant. 

2. Time is not regarded as a fourth dimension; the space-time concept is ignored. 

3. There is no postulated equation of motion or force/acceleration. 

4. There is no need or basis for the equivalence principle. 

5. There is no need or basis for the Lorentz transformation. 

6. There is no need or basis for the relativity principle. 
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7. There is no need or basis for dark energy or accelerating expansion. 

8. There is no need to postulate the Planck equation; the Planck equation can be 
seen as a consequence of Maxwell’s equations. 

9. There is no need to postulate Schrödinger equation or a wave function; resonant 
mass wave can be used to describe localized energy structures. 

 
In local considerations in DU space, it is useful to describe the fourth dimension as an 

imaginary direction; local momentums and energies are presented as complex functions 
with their imaginary parts showing the effects in the fourth dimension. As an example, 
the rest energy of matter appears as the imaginary component of the total energy of mo-
tion. A mass object moving in space has both imaginary and real components in the en-
ergy of motion. In the DU framework, the absolute values of the complex energies are 
equivalent to the corresponding energies in the prevailing theories where energy is used as 
a scalar (real) function only.  

The use of complex functions is a powerful tool for a detailed analysis of the energy 
structures in space. In spherically closed space, the imaginary direction links the global 
effect, the effect of the rest of space, to the local effects in space. The global gravitational 
energy arising equally from all space directions is equivalent to the gravitational energy 
arising from the barycenter of space in the fourth dimension. Also, local mass objects that 
are described as resonant mass wave structures with spherical symmetry in the three 
space directions have their rest momentum in the fourth dimension. 

The system of nested energy frames is a central feature of the Dynamic Universe. The 
conservation of the overall zero-energy balance through the system of nested energy 
frames allows the understanding of the local state of rest and its relation to the state of 
rest in hypothetical homogeneous space, which serves as the universal reference for all 
energy states and the states of motion and gravitation in space. 

The composition of the Planck the constant and the identification of the intrinsic Planck constant is 
an exceedingly important step for the unified expression of energies and for understanding the wave-like 
nature of mass as the substance for all expressions of energy. Applying the intrinsic Planck constant, mass 
can be expressed in terms of a wavelength equivalence or wave number equivalence.  

7.2.2 Natural constants 

Gravitational constant 

The gravitational constant, G, is considered a constant anywhere in space and 
throughout the contraction and expansion of space.  

Total mass in space 

Mass is defined as the substance for the expression of energy. The total mass in space 
is a constant determining, together with the gravitational constant, the dimensions and 
the dynamics of space. Estimates for the total mass MΣ and the mass equivalence M” in 
space are obtained from equation (3.3.2:4). Using the CODATA 2006 value (G = 
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6.6742810–11 [Nm2/kg2]) for the gravitational constant and the Hubble constant 

H0 = 70.5 ±1.3 [(km/s)/Mpc] 74 we get 

 
2

530 4
Σ" 0.776 1.78 10 kg

c R
M M

G
= =         ;    MΣ≈ 2.30·1053 [kg] (7.2.2:1) 

Substance, distance, and time, are the fundamental quantities for human conception 
of observable reality by answering the questions “what, where, and when?”. Their primacy is 
reflected in the system of physical units which relies on kilogram, meter, and second — 
or mass, distance, and time as the three primary quantities.  

The velocity of light 

Several quantities that traditionally are considered as physical constants, appear in the 
DU as parameters related to the state of the Universe. The most important of these is the 
velocity of light, the cornerstone of the theory of relativity. As a consequence of the con-
servation of the zero-energy balance between motion and gravitation, the velocity of light 
is determined by the velocity of the expansion of space in the fourth dimension [equation 
(3.3.1:6)],  
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c c
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= =  (7.2.2:2) 

where the G is the gravitational constant, Ig a geometrical factor resulting from the inte-
gration of the total gravitational energy in space [equations (3.2.2:4 and (3.2.2:5))], MΣ the 
total mass in space, and R4 the 4-radius of spherically closed space.  

Due to the expansion of space, the 4-radius increases with time. As a result, the veloc-
ity of light is also a function of time since singularity [equation (3.3.3:8)]: 
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 (7.2.2:3) 

Velocity c0 in equations (7.2.2:3) means the velocity of light in hypothetical homoge-
neous space where all mass is uniformly distributed. Because of the local geometry of 
space near mass centers, the local velocity of light is not only a function of the expansion 
of space but also a function of the local gravitational environment [equation (4.1.4:10)], 
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where δi means the gravitational factor [equation (4.1.1:30)] in the i:th gravitational frame 
under hypothetical homogeneous space  
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where c0δ(i) is the velocity of light in the apparent homogeneous space of the i:th gravita-
tional frame and r0δ(i) is the distance to the local mass center measured in the direction of 
the apparent homogeneous space of the frame. 
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Planck’s constant 

It has been shown that Planck’s constant contains the velocity of light as a hidden fac-
tor. The energy of one cycle of radiation from a point emitter, when solved from Max-
well’s equations as a dipole in the fourth dimension, is [equations (5.1.2:21)] 

2 3 2 2 2 0
0 0 0Χ 2λ λ

h
E N π e μ c f N h c f N c c

λ
=  = =  (7.2.2:6) 

where N is the number of unit charges oscillating in the emitter, f is the frequency of ra-
diation emitted, and h is Planck’s constant 

3 2

0 02λh χ π e μ c h c=  =  (7.2.2:7) 

where h0 is referred to as the intrinsic Planck’s constant independent of the velocity of light. 
The Maxwell frame conversion factor χλ in equation (7.2.2:7) has the value [see equation 
(5.1.2:9) and (5.1.3:17)] 
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Based on the present knowledge of the gravitational frames in space, the ratio c0/c is 
not high enough to explain the numerical value of χλ in the expected z0 = λ situation. The 
effective dipole length or an apparent effective length of a quantum emitter as a dipole 
may derive from four dimensional geometry or the simplified way Maxwell’s equations 
were applied in the fourth dimension (see Section 5.1.2). 

The fine structure constant 

By applying equation (7.2.2:7) for Planck’s constant, the fine structure constant α ob-
tains the form [equation (5.1.2:14)] 
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 (7.2.2:9) 

which means that the fine structure constant is a pure numerical constant independent of 
any physical constant or the velocity of light and accordingly independent of the expan-
sion of space.  

The Bohr radius 

The Bohr radius of a hydrogen atom is a function of the rest mass of an electron in 
the nucleus frame. The rest mass of an electron in the nucleus frame is subject to reduc-
tion due to the motion of the atom in its local potential energy frame and the motions the 
of the local frame in the parent frames [equation (5.1.3:3)] 
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where me,0 is the electron mass at rest in hypothetical homogeneous space and velocities 
βi = vi/cδ are velocities of the atom (the nucleus frame) in the local energy frame and the 
velocities of the local frame in the parent frames.  

The Bohr radius obtains the form [see equation (5.1.3:13)]  
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where a0(0) is the Bohr radius at rest in hypothetical homogeneous space and velocities βi 
are the velocities of the atom in the local frame and the relevant parent frames. The Bohr 
radius is a function of the velocity of the atom but not a function of the local velocity of light or 
the expansion of space.  

Vacuum permeability 

As a consequence of the conservation of electromagnetic (Coulomb) energy in rela-
tion to the energy of electromagnetic radiation and the rest energy of matter, vacuum 
permeability μ0 rather than vacuum permittivity ε0 is a constant. Vacuum permittivity ε0 is 
expressed in terms of μ0 as [see equation (5.1.1:7)] 
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which means that the value of ε0 increases with the expansion of space. Vacuum permit-
tivity is also a function of the local gravitational state due to the dependence of the local 
velocity of light on the local gravitational state. 

Summary of natural constants 

Table 7.2.2-I summarizes some fundamental physical constants and quantities in the 
theory of relativity, quantum mechanics, the standard cosmology model, and the Dynam-
ic Universe.  

The units of time and distance are constant but instead of being classified physical 
constants they are coordinate quantities, measures used for the physical constants and 
derived quantities. 

7.2.3 Energy and force 

The Dynamic Universe concept is strongly based on energy. The energy available in 
local energy structures and energy objects in space originates from the energy of motion 
that matter in space possesses due to the expansion of space as the surface of a 4-sphere.  

In planetary systems, the total energy is expressed in the form of Kepler’s energy inte-
gral; in thermodynamic systems, it is referred to as the total internal energy of the system. 
In a quantum mechanical system, the total energy as the sum of the kinetic energy and the 
potential energy is expressed by the Hamiltonian in the Schrödinger equation. 
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Quantity SR, GR, QM, SC DU 

gravitational constant  G constant constant 

total mass in space MΣ MΣ + E = constant constant 

electron (unit) charge e constant constant 

vacuum permeability μ0 constant constant 

velocity of light c constant c = c(G,MΣ,R4,δ )  

vacuum permittivity ε0 constant ε0 = f(c) 

Planck’s constant h constant h0 =h/c =Ce2μ0 =constant 

rest mass of a specific particle m constant m = m(βi) 

Bohr radius a0 constant a0 = f(βi) 

Compton wavelength 
of a specific particle λC 

 
constant 

 
λC = f(βi) 

characteristic emission/absorption 
wavelength of atomic objects λn1,n2 

 
constant 

 
λn1,n2 = f(βi) 

frequency of atomic oscillators f constant f = f(R4,δi,βi) 

inertial force F F = –m(β) a  F = – χm(β) a = f(δi ,βi) 

planetary radii r constant, r = r(0) r = r(0) R4/R4(0) 

dimensions of galaxies dG constant, dG = dG(0) dG = dG(0) R4/R4(0) 

   

unit of distance dr dr = f(δ,β);  SR,GR 
constant; QM 

constant 

unit of time dt dt = f(δ,β);  SR, GR 
constant; QM 

constant 

Table 7.2.2-I. Comparison of some fundamental physical quantities and the coordinate quantities 
in the theory of relativity (SR, GR), quantum mechanics (QM), standard cosmology model (SC), 
and the Dynamic Universe (DU). 

Since Newton’s revolutionary insights into the laws of physics, force has been used as a 
basic physical quantity — both for the postulates of gravitation and the laws of motion. 
The concept of kinetic energy was identified more than 100 years after Newton’s laws of 
motion. Energy was derived as the integrated work done by force or a change in momen-
tum, i.e. force was postulated quantity whereas energy became a derived quantity.  

The concept of energy as a primary physical quantity was finally recognized in the 19th 
century. Conservation of energy and a natural trend to minimum potential energy were 
understood as basic laws of nature as a part of thermodynamics. Conservation of energy 
required a closed system for a precise determination of the energy to be conserved. The 
closing of a system assumes definition of the structure and the linkage of the potential 
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energy of the system to the structure. The total energy of a system can be expressed as 
the sum of potential energy and the energy of motion. 

Whole space in the Dynamic Universe is a Hamiltonian surface. More specifically, it is 
a zero-Hamiltonian surface in the 4-dimensional universe where the sum of the energies 
of motion and gravitation is zero. The natural trend towards minimum potential energy 
defines the concept of force and results in the dynamic behavior of the system. 

Conservation of the total energy in space makes the locally available rest energy a 
function of the motion and gravitational state of the local system in space. Relativity in 
the DU is a consequence of the finiteness of total energy in space. 

In the Dynamic Universe, the inherent forms of the energies of motion and gravita-
tion are postulated in an “undisturbed” environment; gravitation for mass in homogene-
ous infinite space in equation (2.2.2:1) and motion in the environment at absolute rest in 
equation (2.2.2:4). The energies of motion and gravitation of mass at rest in spherically 
closed homogeneous space can be derived from the inherent forms of the energies due to 
the symmetry of spherically closed space. In real space, mass is not uniformly distributed 
but accumulated into mass centers in several steps. The environment within space is not 
“environment at rest” either. That is why both the energies of gravitation and motion are 
modified by the mass distribution and the motion of real space.  

Force in the DU is a derived quantity. Force is an implication of the “natural trend” 
towards minimum potential energy; force is defined as the gradient of potential energy. 
The equations of motion are derived from the conservation of total energy of motion 
comprising the energies due to the motion of space and the motion in space. 

Unified expression of energy 

Gravitation and motion are described as primary expressions of energy. Mass in space 
is energized through the primary energy buildup of space in contraction and expansion. 
The primary energy buildup creates the rest energy of matter as an excited state of mo-
tion and gravitation. In hypothetical homogeneous space, the rest energy and the balanc-
ing gravitational energy appear in their elemental forms [see equation (3.3.5:2)] 

( ) 0 0 0 0 0 0 00,0

4

"
m

GM
E c c mc c ћ k c m

R
= = = =p  (7.2.3:1) 

The concept of mass as the substance for the expression of energy is reflected in 
equation (7.2.3:1) as equal first order contributions of mass m both to the energy of mo-
tion and to the energy of gravitation. 

Electromagnetic energy is described as a secondary form of the energy of motion 
comprising the expressions of electromagnetic radiation and Coulomb energy [see equa-
tions (5.1.2:4) and (5.1.1:11)] 

2 0
rad 0 rad 0

h
E N c c m c c

λ
= =  (7.2.3:2) 

and 

21 2 0 0
EM 0 0 0

4
EM

q q μ h
E c c N α c c m c c

πr L
= − = =  (7.2.3:3) 
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where h0 = h/c  is the intrinsic Planck constant. In the last form of Coulomb energy, α is 
the fine structure constant defined in equation (5.1.2:13) and L = 2πr is the circumference 
of a circle with radius r. The substance of electromagnetic energies in equations (7.2.3:2) 
and (7.2.3:3) can be expressed as mass equivalences 

 2 0
rad kg

h
m N

λ
=  (7.2.3:4) 

and 

 2 0 kgEM

h
m N α

L
=  (7.2.3:5) 

In radiation, the elemental quantity of substance, a quantum, is h0/λ (N = 1) which de-
scribes a quantum as one wavelength of radiation related to emission from a transition of 
a unit charge (see Section 5.1.2). 

The rest mass of a mass object can be expressed in terms of wavelength equivalence 

( )
( )

( )0 Compton-wavelength
Compton β

rest β

h
λ

m
=  (7.2.3:6) 

and the relativistic mass m(β ) =(m+Δm) in terms of wavelength equivalence  

( )
( ) ( )

20 0

0

1
β

β

h h
λ β

m m
= = −  (7.2.3:7) 

Combined with the motion of space in the fourth dimension, the rest momentum of a 
mass object is 

( )
( ) ( )

0
0rest rest β rest β

rest β

h
c ћ k c m c

m
= = =p i i i  (7.2.3:8) 

The rest energy of a mass object appears as the energy of motion in the fourth dimen-
sion. A mass object can be described as a standing wave structure with wavelength equal 
to the wavelength equivalence of the rest mass. 

The momentum of an object moving at velocity β in a local frame is expressed by a 
wave front with wavelength λ(β ) propagating in parallel with the object at velocity β 

( )
( )

( )
0

0 0β deBroglieβ β

β

h
m ћ k ћ k

λ
= = = =p v v v c  (7.2.3:9) 

In the DU framework, the total momentum of an object can be expressed in complex 
form as 

( ) ( ) ( )0 0 0 0
i

β β
ћ k c ћ k βc ћ k c= +  (7.2.3:10) 

which, by multiplying by c0 returns the complex energy of motion  

( ) ( ) ( )0 0 0 0 0 0 0
i

β β
c ћ k c c ћ k βc c ћ k c= +  (7.2.3:11) 

equal to 

( ) ( ) ( )0 0 0 0 0 0 0
i

β β
c ћ k c c ћ k βc c ћ k c= +  (7.2.3:12) 
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Solving for the scalar value of the total energy squared (7.2.3:11) returns the energy 
momentum four vector in the form 

( )
22 2 2 2

0 0totE c p c mc= +  (7.2.3:13) 

and by setting c0 = c we get the traditional form of energy momentum four vector 

( )
22 2 2 2

totE c p c mc= +  (7.2.3:14) 
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7.3 Comparison of DU, SR, GR, QM, and FLRW cosmology 

Philosophical basis 

The Theory of relativity and 
standard cosmology model 

The Dynamic Universe 

Spacetime is a four-dimensional continuum 
with a local structure dependent on the distri-
bution of mass density. 

Space is a dynamic spherical structure closed 
through the fourth dimension.  

Time is considered as the fourth dimension. 

Time and distance are attributes of local grav-
itation and relative velocities. 

The fourth dimension is geometrical in na-
ture, but inaccessible from space. 

Time and distance are universal and absolute. 

On a cosmological scale space is homogene-
ous, i.e. it looks essentially the same at any 
location (the cosmological principle). 

On a cosmological scale mass is uniformly 
distributed in space, which together with the 
spherical symmetry makes space look essen-
tially the same at any location. 

The velocity of light is a physical constant and 
the maximum velocity by definition. Mathe-
matically, the velocity of light is made the 
maximum velocity in space through the Lo-
rentz transformation.  

The velocity of light is determined by the ve-
locity of space in the fourth dimension. The 
velocity of light is affected by the local gravi-
tational state. 

The maximum velocity of light, which occurs 
in hypothetical homogeneous space, is deter-
mined by the state of the Universe. 

Lorentz covariance is a property of spacetime 
required by the special theory of relativity. 

Relativity principle is postulated to make the 
law of nature look the same for any observer. 

Equivalence principle is postulated. 

The laws of nature are the same anywhere in 
space. No relativity principle, equivalence 
principle, or Lorentz covariance is postulated. 

Relativity means relativity between an observ-
er and an object. 

Relativity means the relativity between local 
and the whole. 

Total energy in space cannot be defined. Total energy in space is conserved in all inter-
actions in space.  

Mass is a form of energy. Mass is the substance for the expression of 
energy. Total mass in space is conserved 
throughout the contraction–expansion pro-
cess of space. 

Gravitational interaction between masses is 
actuated by gravitons propagating at the ve-
locity of light. 

Gravitational interaction is instantaneous. It 
can be described as sensing of the local po-
tential energy and its gradient. 
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The energies of matter and radiation are as-
sumed to appear instantaneously in the Big 
Bang. Gravitational energy and the possible 
dark energy cannot be defined quantitatively. 

The rest energy of matter is the energy of mo-
tion mass possesses due to the motion of 
space in the fourth dimension. The rest ener-
gy of matter is obtained in a zero-energy pro-
cess against release of gravitational energy in 
the contraction of space preceding the ongo-
ing expansion phase. 

The flow of time started at the Big Bang. Lo-
cally, the flow of time (proper time) depends 
on the state of motion and gravitation of the 
object – relative to an observer. 

Time is eternal and absolute in nature, but the 
frequencies of oscillations (like the frequency 
of an atomic clock) depend on the state of 
gravitation and motion of the object. 

 

Physics 

The theory of relativity and quantum 
mechanics 

The Dynamic Universe 

Rest energy is a property of mass. 

The rest energy of matter is expressed 

2E mc=  

where both m and c are independent of the 
state of motion and gravitation. 
 
 

 

Rest energy is the energy of a mass object due 
to the motion of space in the fourth dimen-
sion. 

The rest energy of matter is an attribute of the 
local gravitational state and the motion of the 
object in the local frame and the gravitational 
state and the motion of the local frame in its 
parent frames 

( ) ( )2 2

0 0 0

1

1 1
n

i irest n

i

E c mc m c δ β
=

= = − −  

Any state free of acceleration can be defined 
as a state of rest. 

The state of rest is an attribute of an energy 
frame.  

Proper time and unit length in a local frame 
are dependent on the state of motion and 
gravitation of the frame relative to an observ-
er. 

The units of time and length are absolute and 
universal, and independent of each other. The 
rate of physical processes is dependent of the 
local energy state. 

The total energy momentum four vector is 
expressed as 

( )
22 2 2 2

tot
E c p c mc= +  

The energy momentum four vector results 
from the complex nature of the energy of mo-
tion 

( ) ( )¤ ¤

, 0 0
i

m tot
E c p c p mc= = +  

resulting in 

( )
22 2 2 2

0 0tot
E c p c mc= +  
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Planck’s equation postulated as 

radE h f=  

means the energy of a quantum of electro-
magnetic radiation. 

The energy of a quantum in Planck’s equation  

( ) 0
0 0 0rad

h
E hf h c f c c

λ
= = =  

is derived from Maxwell’s equation as the en-
ergy emitted by a single electron transition 
into one cycle of radiation by a point source 
as one-wavelength dipole in the fourth dimen-
sion. 

The quantum of action, Planck constant h, 
has the dimensions of momentum-length. 

The intrinsic Planck’s constant, 

0

h
h

c
=  

has the dimensions of mass-length. 

Inertia is a property of mass. It is the same 
everywhere in space.  

Inertia is related to the work done in reducing 
the rest mass of an object moving in space 
and hence the gravitational effect of the rest 
of mass in space on the object in motion.  

 

Cosmology 

FLRW cosmology The Dynamic Universe 

The Universe came into being in a “Big Bang” 
about 14 billion years ago and obtained its 
energy instantaneously as the energy of radia-
tion in a quantum jump. The energy created in 
the Big Bang has been conserved as a con-
stant. 

The energy excitation of the Universe was 
built up in a continuous contraction – expan-
sion cycle. The energy buildup culminated in a 
singularity about 9.3 billion years ago when 
the contraction of space reverted into expan-
sion. As space expands, the energy excitation 
built up in the contraction phase is gradually 
released. The energy of the motion of space 
appears as the rest energy of matter. 

The future of the Universe is unclear. The 
expansion of space continues forever if the 
density of mass in space is less than or equal 
to the Friedman critical mass density. Alterna-
tively, it collapses in a “Big Crunch”.  

The expansion continues to infinity but in the 
process the energies of motion and gravitation 
are consumed, and all expression of matter 
and radiation terminates. The DU concept 
does not exclude repeated contraction – ex-
pansion cycles. 

The expansion of space occurs in free space 
between gravitationally bound local systems 
only. The dimensions of galaxies and the radii 
of orbiting stellar systems are conserved in the 
course of the expansion of space.  

The expansion of space occurs uniformly eve-
rywhere in space; the dimensions of galaxies 
and the orbital radii of stellar systems are also 
subject to expansion. However, the radii of 
solid objects conserve their dimensions be-
cause atomic radii remain unchanged in the 
course of the expansion of space.  
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Light propagates along geodetic lines of 
spacetime.  

Light follows the shape of space. At cosmo-
logical distances, the propagation path of light 
is a spiral in the fourth dimension. 

The original (linear) Hubble law for redshift is 

0

H

H DD
z

R c
= =   

where RH is the Hubble radius, D is the dis-
tance of the object, and H0 is the Hubble con-
stant. The standard model does not provide a 
general prediction for the Hubble law due to 
the lack of an unambiguous prediction of the 
development of the expansion of space. 

The Hubble law for redshift has the form 

4

4

1
1

θD R
z e

D R
= = −

−
 

where R4 is the 4-radius of space, D is the 

optical distance of the object, and θ is the 
distance angle of the object in the universal 
coordinate system.  

The prediction of the angular size of a stand-
ard rod and the size of objects shows a mini-

mum at about z  2 which means a radical 
deviation from a Euclidean view. 

Due to the spherical geometry and the expan-
sion of local systems, the angular sizes of dis-
tant galaxies and quasars are observed in Eu-
clidean geometry 

dθψ
z

=  

where z is the redshift observed and θd is the 
angular size of the object in the universal co-
ordinate system with origin in the 4-center of 
space. 

Recent observations of the magnitude/red-
shift relationship in distant supernova explo-
sions mean acceleration of the expansion of 
space.  

Acceleration is assumed as being caused by 
“dark energy” working against gravitation be-
tween galaxies. 

Recent observations of magnitude/red-shift in 
distant supernova explosions follow the DU-
prediction without any additional assumptions 
or free parameters. 

Matter identified through its gravitational ef-
fect alone is referred to as dark matter. There 
is no theoretical description of dark matter. 

Unstructured matter is the initial form of en-
ergized mass. A certain share of unstructured 
matter is converted into visible, structured 
material. 
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7.4 Conclusions 

The Dynamic Universe model provides a comprehensive description of observable 
physical reality. It is based on a few rational assumptions and straightforward mathemat-
ics and produces precise predictions that are in excellent agreement with observations. 

The Dynamic Universe model means a major restructuring of the picture of reality. 
Space is seen as a highly ordered entity where local structures are results of diversification 
of the whole in a process directed by an overall zero-energy balance.  

The Dynamic Universe model re-establishes the concepts of absolute time and dis-
tance. It is seen that the essence of relativity is in the finiteness of total resources in space. 
Relativity in the DU is not described by distorting the coordinate quantities, time and dis-
tance, but by showing the effects of motion and gravitation on the locally available share 
of the total energy.  

Reflecting on the history of the theory of relativity, in 1948, Einstein asked himself, 
“… why was another seven years required for the construction of the general theory of relativity? The main 
reason lies in the fact that it is not so easy to free oneself from the idea that coordinates must have an im-
mediate metrical meaning.”  88  

To now free ourselves from the idea that coordinates are used as parameters to ex-
plain observations and to return back to coordinates with direct metrical meaning may 
require an even greater shift in thinking. 

Description of relativity as a consequence of finite total energy in space conserves ab-
solute coordinate quantities but makes the locally observed rest energy of matter a func-
tion of the velocity and gravitational environment of the object studied. A local state of 
rest is linked to the universal state of rest and relativity is inherently brought into quan-
tum mechanical considerations where the energy states are related to the rest energy of 
the objects in the system. In Dynamic Universe any local object and event is linked to the 
rest of space. 

The Dynamic University approach means a major step in the unification of quantum 
mechanics, relativistic physics, and cosmology. Unification comes from the primary pos-
tulate basis and unified expressions of energy that allow an unbreakable study of the con-
servation of energy in all interactions in space. 
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8. Index 

 symbol Section 

acceleration 
 central acceleration (in the imaginary direction) 
 gravitational acceleration 
 inertial acceleration 

a  
4.1.8 
4.1.6, 4.2.2 
4.1.2, 4.1.7 

angle between locations in space, see distance angle θ 2.1.1, 3.3.4 

angular size (observed) 
 of standard rod 
 of expanding objects 

 6.2.2, 6.2.3’ 
6.2.2 
6.2.3 

anti-matter  3.3.5 

Bohr radius  5.1.4 

bolometric energy flux  1.3.3 

bending of light path ψ 5.4.3 

black hole (local singularity in space)  1.2.6, 4.2.8 

complex function 
 notation of complex quantities 

 
 

2.1.4 
2.1.4 

Compton wavelength, wave number  1.1.5, 1.2.1, 5.1.3 

conservation laws 
 of energy 
 of momentum 
 of mass 
 of phase velocity 

 2.2.2 
2.2.2 
2.2.2 
2.2.2 
5.2.3 

contraction of space  3.3.1 

Coulomb energy 
 mass equivalence of Coulomb energy 

 5.1.2 
5.1.2 

critical mass density (FLRW, Friedman) ρc 3.3.2 

critical radius  
 critical radius in Schwarzschild space 
 critical radius in DU space 

rc 

rc(Schw) 
rc(DU) 

1.2.6, 4.1.6, 4.1.9, 4.2 
1.2.6,  
1.2.6, 4.1.6, 4.1.8 

curvature of space  4.1.9 

dark energy (FLRW)  6.2.3, 6.3.4 

dark matter   3.3.2, 3.3.5,  

de Broglie wavelength, wavenumber λdB , kdB 1.1.5, 5.1.3 

distance in space, in the direction of 
 apparent homogeneous space (flat space distance)  
 local space (tilted space) 

s = θ·R4 
r0δ 
rδ 

2.1.1, 3.3.4 
1.2.2, 4.1.1 
4.1.1, 4.2.1,  

distances (cosmological definitions) 
 optical distance (DU) 
 physical distance (DU) 
 co-moving distance (FLRW) 
 coordinate distance (FLRW) 
 angular diameter distance (FLRW) 
 luminosity distance (FLRW) 

 
D 
Dn 

DC 
DC 

DA 

DL 

 
1.3.3, 3.3.4, 6.2.1 
1.3.3, 3.3.4 
1.3.2 
1.3.2 
1.3.2,  
6.3.1 

Doppler effect  1.1.5, 1.3.2, 5.2.3 
double slit experiment  5.3.5 

energy buildup in space  3.3.1 

energy object  4.1.4, 5.3.2, 5.3.4 
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energy of gravitation 
 complex presentation of the energy of gravitation 
 global gravitational energy 
 imaginary energy of gravitation 
 inherent energy of gravitation 
 local gravitational energy 
  total energy of gravitation 

Eg 
E¤

g=Eg’+iE”g 

Eg(total) 

E”g 
Eg(0) 

EG=ΔEg(δ) 

Eg(tot) 

2.2.2, 3.2.2, 3.3.2 
3.3.1 
3.2.2, 4.1.1 
4.1.1 
2.2.2 
4.1.1,  
3.3.2 

energy of motion 
 complex presentation of energy 
 inherent energy of motion 
 internal energy of motion  
 kinetic energy 
 rest energy 
 imaginary energy of motion 
 total energy of motion 

Em 
E¤

m=Em’+iE”m 

Em(0) 
EI 
Ekin 
Erest 
E”m 

Em(tot)  

2.2.2 
2.1.4, 4.1.1 
2.2.2 
4.1.3 
4.1.2,  
4.1.4, 4.1.5 
4.1.1 
4.1.2 

expansion of space  3.3.1 

fine structure constant α 5.1.2 

force 
 central force 
 gravitational force 
 inertial force 

F , F 
FC ,FC 
Fg , Fg 
Fi , Fi 

2.2.2 
4.1.3, 4.1.8 
3.2.2 
4.1.7 

fourth dimension 
 in hypothetical homogeneous space 
 in local space 

 2.1.1, 3.3.1 
2.1.1, 4.2.1 
4.2.1 

four-radius of hypothetical homogeneous space 
 apparent 4-radius of local space 

R4 or R0 
R” 

3.3.3 
4.1.1 

frame conversion factor χ = c0/c 4.1.4 

frame dragging (by optically dense medium)  5.4.6 

frame of reference, see system of energy frames  4.1.4 

free fall (gravitational)  vff 4.1.1 

gravitational constant G 3.3.2 

gravitational energy, see energy of gravitation  2.2.2, 3.2.2, 3.3.2 

gravitational factor δ 4.1.1, 4.4.4,  

homogeneous space 
 apparent homogeneous space 
 hypothetical homogeneous space 

 4.1.1 
4.1.1 
4.1.1 

Hubble constant 
 Hubble flow  
 Hubble law 
 Hubble radius 

H0 
 
 
RH  

3.3.2 
1.3.2 
6.1.1, 6.1.2 
3.3.2, 6.1.2 

hypothetical homogeneous space  4.1.1 

imaginary direction (direction of imaginary axis) 
 in apparent homogeneous space 
 in hypothetical homogeneous space 
 in local space 
 imaginary energy 
 imaginary momentum 

Im 
Im0δ 
Im0 
Imδ 
iE” 
ip”, ip” 

2.1.1, 2.1.4 
4.1.1 
4.1.1 
4.1.1 
2.1.4, 3.3.1, 4.1.1 
2.1.4, 4.1.1 

inertia  2.2.3, 4.1.3, 4.1.7 

intensity factor Iλ 5.1.1 

 internal energy 
 internal momentum 

EI 
pI 

4.1.3 
4.1.3 

inherent energy of gravitation Eg(0) 2.2.2 

inherent energy of motion Em(0) 2.2.2 

K-correction K 6.3.4 

kinetic energy, see energy of motion Ekin 4.1.2 
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local space 
local frame of reference 
local velocity of light 
local gravitational state 
local rest energy 

 
 
 
 
 

4.1.4 
4.1.4 
2.1.4, 
4.1.4 
4.1.4 

Mach’s principle  1.2.2, 4.1.2, 4.1.3 

magnitude (absolute)  
 apparent magnitude 
 distance modulus 

M 
m 
μ 

6.3.1 
6.3.1 
6.3.1 

mass 
 definition 
 total mass in space 
 mass equivalence of the total mass  
 mass equivalence of radiation 
 mass equivalence of Coulomb energy 
 mass object 
 relativistic mass (effective mass) (SR) 
 rest mass 

m 
M 
MΣ 

M” 
mλ 
mEM 

 
mrel 

m 

2.2.1 
2.2.1 
3.3.1, 3.3.2 
3.2.2 
2.1.1, 5.1.1 
5.1.2 
5.3.4 
1.2.2, 1.2.6, 4.1.2 
4.1.4 

matter 
 anti-matter 
 baryonic matter 
 dark matter 

 3.3.5 
3.3.5 
3.3.5 
3.3.5 

Maxwell’s equations χλ 1.1.5, 1.4.2, 5.1.1 

momentum 
 complex presentation of momentum 
 in space 
 in the fourth dimension 
 internal momentum 
 rest momentum 

p 
p¤= p’ + ip” 
p = p’ 
p” = ip”  
pI

¤
 

prest=|p”| 

2.2.2 
2.1.4 
2.1.4 
2.1.4 
2.2.2 
2.2.2, 4.1.1, 4.1.3 

Planck constant 
 intrinsic Planck constant 
 intrinsic reduced Planck constant 
Planck equation 
Planck units 
Planck distance 
Planck mass 

h 
h0 = h/c0 

ћ0 = h0/2π 
 
 
r0 
m0 

1.1.5, 5.1.1 
5.1.1 
5.1.3 
1.1.5, 5.1.1 
5.3.6 
5.3.6 
5.3.6 

phase velocity (of electromagnetic radiation) c 5.3.2 

primary energy buildup  3.3.1 

radius (4-radius) of space  1.1.2, 1.1.3, 2.1.1 

recession velocity 
 physical (of distant objects) 
 optical 

 
vn 

3.3.4, 6.1.2 
3.3.4, 6.1.2 
6.1.2 

redshift of radiation (cosmological) z 6.1.2 

reference at rest 
 absolute reference at rest 
 the state of rest in hypothetical homogeneous space 
 local state at rest 

 2.1.3, 4.1.4 
2.1.3 
1.3.1, 3.3.4 
4.1.3 
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Appendix 1, Blackbody radiation 

Energy density of radiation in a blackbody cavity 

The wavelength equivalence λT, and the frequency equivalence fT of temperature T, re-
spectively, are defined as 

0 0 0

0

T

h c c hhc
λ

kT kT k T
= = =  (A1:1) 

and 

T

T

c
f

λ
=  (A1:2) 

where k is the Boltzmann constant. In the DU framework, the product kT is proportion-

al to the velocity of light squared, or kT  c0c. In order to keep the temperature T inde-
pendent of the velocity of light, it is useful to define the intrinsic Boltzmann constant k0 de-
fined as 

0

0

k
k

c c
  ; ( )0

0 0 0Tλ

T

h
E c c k T c c kT

λ
= =  =  (A1:3) 

In the DU framework, k0 is constant in the course of the expansion of space, and al-
lows the use of temperature T, in Kelvins, as a parameter independent of the expansion 
of space and the declining velocity of light. 

By applying the wavelength equivalence λT, the energy of radiation in a wavelength dif-
ferential dλ in a blackbody cavity is 

( )
( )

( )

52
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E E

m1T

T

λ λ λ
T

λ λπh c
d λ dλ dλ

λ e
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 (A1:4) 

and by applying the frequency equivalence fT, the energy of radiation in a frequency dif-
ferential df  is 

( )
( )

( )
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f f f
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 (A1:5) 

The total energy density in a blackbody cavity is obtained by integrating equation 
(A1:5) 

( )

( )
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where the factor π 4/15 comes from the definite integral. In terms of λT the total energy in 
equation (A1:6) obtains the form 

5 5
20

3 3

8 8
E

15 15 T Ttotal λ T λ

T T T

hπ π
c E I E

λ λ λ
=  = =   (A1:7) 

In the last two forms of (A1:7) the energy density in the cavity is related to the energy 
of a cycle of radiation emitted at wavelength λT. The factor IT is the intensity factor char-
acteristic to blackbody temperature T or the corresponding wavelength equivalence λT as 

5

3

8

15
T

T

π
I

λ
=  (A1:8) 

Radiation emittance 

The radiation emittance, i.e. the total bolometric energy flux emitted by a blackbody to 
the surrounding space is obtained from equation (A1: 7) by multiplying the energy density 
in the cavity by the Stefan-Boltzmann factor c/4 

5 5
2 20 0

2 2 2

2 2 W

4 15 15 mTbol T λ T

T T T T T

h hc π c π
F I E c f c

λ λ λ λ λ

 
=   =  =    

 (A1:9) 

which relates the total energy flux to the unit energy flux carried by one cycle of radiation 
at wavelength λT. Substitution of (A1:1) for λT in (A1:9) returns the classical expression of 
radiation emittance 

5 4
4 4

3 5 2

0

2 W

15 m
bol

π k
F T σT

h c

 
=  =   

 (A1:10) 

where the constant σ is referred to as the Stefan-Boltzmann constant,  = 5.669310–8 

[W/m2 /K4]. 

Spectral distribution of blackbody radiation  

The energy flux emitted in a wavelength differential dλ to a steradian is obtained by 
applying the Stefan-Boltzmann factor c/4, and factor 1/4π for the flux density per stera-
dian, to (A1:5) 

( )
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 (A1:11) 

where F(λ) is 
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 (A1:12) 

In a frequency differential df  the corresponding energy flux is 
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( )
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where F( f ) is 
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The factor F0 in equations (A1:12) and (A1:14) is 
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 (A1:15) 

where Fbol(sr) is the bolometric flux of (A1:10) per steradian Fbol(sr) = Fbol/4π. 
The energy flux emitted in the wavelength or frequency range of a narrowband filter 

with relative width W = Wλ = Δλ/λ = Wf = Δf/f  is obtained from equations (A1:12) and 
(A1:14), respectively, 

( )

( )

( )
( )

( )

5 4

0 0 2

Δ W

m sr1 1T T

T T

W λ λ λ λ λ
T

λ λ λ λλ λ
F F F W

λ λe e

 
=  =  − −  

 (A1:16) 

( )

( )

( )
( )

( )

3 4

0 0 2

Δ W

m sr1 1T T

T T

W f f f f f
T

f f f ff f
F F F W

f fe e

 
= =  − −  

 (A1:17) 

or by relating the narrow band power density to the bolometric flux density by substitut-
ing (A1:15) for F0 in (A1:16) and (A1:17) as 
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 (A1:18) 

The distribution function ( )4 1xD x e= − obtains its maximum at x = 3.9207 
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 (A1:19) 

At a fixed relative bandwidth W the maximum flux occurs when the nominal frequen-
cy or wavelength of the filter is fW/fT = λT/λW = 3.9207 (fW = c/λW) 

( ) ( )max, 4 2

15 W

m sr
bol srW f λ

F D W F
π

 
=      

 (A1:20) 

which relates the energy flux through an ideal narrow band filter to the bolometric energy 
flux of the radiation. The nominal frequency of the filter is matched to the maximum 

power throughput of blackbody radiation by setting fW = 3.9207 fT. 
Table A1-I lists the frequencies and wavelengths corresponding to the maximum 

power density obtained from equations (A1:12), (A1:19) and (A1:14) for the cosmic mi-

crowave background. The blackbody temperature of the CMB is 2.725 K, and the corre-
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sponding frequency and wavelength equivalences are fT = 56.8 GHz and λT = 5.28 mm, 
respectively.  

Figure A1-1 illustrates the energy spectra calculated for the cosmic microwave back-

ground as 2.725 K blackbody radiation. 
 

Equation 
Distribution 
function D 

x for D 
maximum 

Unit 
f (Fmax), 
CMB [GHz] 

λ (Fmax) 
CMB [mm] 

(A1:12) 
( )

5

1x

x

e −
 

4.9651 
2

W
m

m sr  

282 1.06 

(A1:19) 
( )

4

1x

x

e −
 

3.9207 
2

W

m sr  

223 1.35 

(A1:14) 
( )

3

1x

x

e −
 

2.8214 
2

W
Hz

m sr  

160 1.87 

Table A1-I. Application of equations (A1:12), (A1:19) and (A1:14) for determining the frequencies 
and wavelengths of the maximum power density of the cosmic microwave background in units of 
[Wm–2sr–1m–1], [Wm–2sr–1] and [Wm–2sr–1], respectively. See also Figure A1-1. 

 
Figure A1-1. The energy flux density of the cosmic microwave background (CMB) in terms of F(λ) 
[Wm–2sr–1m–1] (A1:8), FW [Wm–2sr–1] (A1:15), and F(f) [Wm–2sr–1Hz–1] (A1:10) in the frequency 
range from 100 MHz to 10 THz. The wavelength of the observed maximum power density in 
terms of F(f) [Wm–2sr–1Hz–1] is 1.87 mm.  In terms of F(λ) [Wm–2sr–1m–1] the maximum occurs at 
wavelength 1.06 mm. The integrated total energy is equal for each flux density functions. Curve FW 
[Wm–2sr–1] shows the shape of the flux density function observed in narrow band filters with 
W = Δλ/λ = Δf/f.
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“The Dynamic Universe is an imposing achievement paving the way for better understanding of
nature. It offers a coherent framework uniting the entire domain of physical reality from cosmology to
relativity and non-local quantum phenomena.” – Tarja Kallio-Tamminen, PhD, theoretical
philosophy, MSc, high energy physics.

“The model is rational and can be understood by anyone with basic knowledge in physics and
mathematics.” – Ari Lehto, PhD, physics.

Tuomo Suntola, PhD in Electron Physics at Helsinki University of
Technology (1971). Dr. Suntola has a far-reaching academic and industrial
career comprising pioneering work from fundamental theoretical findings
to successful industrial applications like the Atomic Layer Deposition method
widely used in the semiconductor industry.

“Considerations of the foundations of physics have been a perpetual source of inspiration
during all my technological developments. It seems that nature is built on a few
fundamental principles. The zero-energy approach in the Dynamic Universe opens
knots built into prevailing theory structures and offers a framework for holistic
description of reality.”




