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The talk is based on the following papers on the topic in question
together with Paul Busch (York) and Reinhard Werner (Hannover):

• Proof of Heisenberg’s Error-Disturbance Relation, PRL 111
(2013)160405 (2013) [5 pages], arXiv:1306.1565 [quant-ph];

• Heisenberg uncertainty for qubit measurements,
arXiv:1311.0837 [quant-ph];

• Measurement uncertainty relations (forthcoming),
- a detailed mathematical investigation;

• Noise operators and measures of rms error and disturbance in
quantum mechanics (forthcoming),
- a detailed conceptual investigation.
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Motivation

Heisenberg’s 1927 intuitive ideas with a semiclassical analysis of
the γ-ray thought experiment led him to the following conclusion

a position measurement of an electron with an accuracy
(resolution of the microscope) q1 necessarily disturbs its
momentum by an amount p1 such that

q1p1 ∼ h.
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Recently:

Scientific American, March 8, 2012:
experimenters violate Heisenberg’s original version of the
famous maxim, but confirm a newer, clearer formulation.

phys.org, Sep 07, 2012:
scientists cast doubt on renowned uncertainty principle.

Tähdet ja avaruus 5/2013:
Hiukkaset heittäytyvät kurittomiksi. Vuonna 1927 Werner
Heisenberg muotoili kuuluisan epätarkkuusperiaatteen. Nyt se
on saatu rikottua laboratoriokokeissa.
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More recently:

IN FOCUS NEWS 420 | NATURE | VOL 498 | 27 JUNE 2013
Proof mooted for quantum uncertainty.

Physics Synopsis OCT 17, 2013 :
Rescuing Heisenberg

Physicsworld.com NOV 1, 2013:
Uncertainty reigns over Heisenberg’s measurement analogy

Claim: modern quantum mechanics confirms Heisenberg’s
intuitions.
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Structure of the talk

Framework - the theory
Uncertainty relations
Quantifying errors
The results
What is wrong with the NO-approaches
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Frame - statistical causality

state = equivalence class [π] of preparations;
observable = equivalence class [σ] of measurements;

Assumption: the map [π] 7→ p[σ]
[π] preserves the statistical mixing of

preparations π and thus of states [π].
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Frame - notations/structures

Hilbert space quantum mechanics (with the Assumption):
• States [π] as density operators ρ (positive trace one ops);

Then
• Observables [σ] as POMs A : X 7→ A(X ), with value spaces

(Ω,A), typically (R,B(R)) or (R2,B(R2));
An observable is sharp if it is projection valued;

• The Born rule: X 7→ pA
ρ (X ) = tr [ρA(X )] = Aρ(X );

• Observables A are equivalence classes of (CP) instruments I,
instruments I are equivalence classes of measurements
M = (K, σ,Z,U):

tr [ρA(X )] = tr [I(X )(ρ)] = tr [Uρ⊗ σU∗1⊗ Z(X )]
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Frame - joint measurements

• A measurementM of A followed by a measurement of B defines
a sequential biobservable E,

E(X ,Y ) = I(X )∗(B(Y ))

E1(X ) = E(X ,Ω2) = I(X )∗(B(Ω2)) = A(X ),

E2(Y ) = E(Ω1,Y ) = I(Ω1)∗(B(Y )) = B′(Y ).

• Such an E extends to a joint observable G with

G(X × Y ) = E(X ,Y ).

• If one of the marginal observables is sharp, then the marginal
observables commute and E / G are of the product form:

E(X ,Y ) = E1(X )E2(Y ) = G(X ×Y ) = G1(X )G2(Y ) = A(X )B′(Y )
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An important corollary

Since (sharp) position Q and momentum P are maximal quatities we
have the following FUNDAMENTAL COROLLARY:

Corollary

A measurement of position Q, with an instrument I, destroys all the
momentum information coded in the initial state ρ since all the effects
P′(Y ) = I(R)∗(P(Y )) of the disturbed momentum P′ are functions of
the position operator Q, that is, all the characteristic properties of
momentum (esp. translation invariance) are lost in the measurement,
and vice versa.

ρ 7→ I(R)(ρ)

Pρ(Y ) 7→ PI(R)(ρ)(Y ) = P′ρ(Y )
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No measurement (weak or not) and no definition of error and
disturbance can avoid this result.

This also suggests that if there is no error, say, in position
measurement, then the disturbance in momentum must be huge.
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Uncertainty relations
– three sorts –

One may distinguish between three types of uncertainty relations:

1. For preparations (Kennard-Weyl-Robertson – the text book
versions);

2. For the disturbance on (the statistics of) one observable caused
by a measurement of another observable;

3. For joint accuracies in approximate joint (or bi-) measurements.

Depending on a pair of observables such relations may look quite
different, be of a product form or of a sum form or something else.
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2. Error - disturbance relations

In measuring an observable A with a measurementM, the
actually measured observable A′ may differ from A.

An operational quantification ∆(A′,A) of the difference between
A′ and A is the error or accuracy in measuring A withM.

The measurementM causes a change (disturbance) in any
other observable B, the disturbed observable B′ being uniquely
determined from B byM: B′(Y ) = I(Ω)∗(B(Y )).

An operational quantification ∆(B′,B) of the difference between
B′ and B is the disturbance of B caused byM.
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For a given pair (A,B) the product ∆(A′,A) ·∆(B′,B) may have a
strictly positive lower bound for anyM.

Such a relation - if exists - is an UR for error-disturbance.

Strictly speaking, and "uncertainty relation" is any inequality that
excludes the origin ∆(A′,A) = 0 = ∆(B′,B) and some region
around it. For instance,

∆(A′,A)2 + ∆(B′,B)2 ≥ c > 0.

The product form is atypical, valid essentially only for Q and P.

We show that such relations hold for the canonical pair (Q,P) as
well as for pairs of qubit observables like sx , sy , sz .
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The scenario discussed by Heisenberg for q1 · p1 ∼ h.

The middle row shows an approximate position measurement Q′

followed by a momentum measurement.
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3. Approximate joint measurements
The error-disturbance scenario is a special case of the
approximate joint measurement scenario (since biobservables
extend to joint observables).

If A and B are such that they cannot be measured jointly, there is
the possibility that they can be measured jointly if (and only if)
the involved measurement accuracies ∆(A′,A) and ∆(B′,B)
satisfy a relation, like

∆(A′,A) ·∆(B′,B) ≥ c > 0, (1)

where A′ and B′ are the marginal observables of an approximate
joint observable M; A′ = M1, B′ = M2.

Such a relation (product or sum) - if exists - is an UR for
measurement accuracies.

Again, such a relation exists for (Q,P) as well as for the qubit
pairs.
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How to define ∆(A′,A)?

The notions of error and disturbance are completely symmetric so
that is suffice to consider e.g. the error.

Though there is no point in comparing individual measurement
results of A and A′ in each case, one may compare the distributions
Aρ and A′ρ in all input states.

The number ∆(A′,A) should thus compare the distributions Aρ and
A′ρ for all (or a relevant subset of) input states ρ with the obvious
requirements:
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∆(A′,A) = 0
means that the “approximate” device A′ is completely equivalent
to the ideal A, i.e., for every input state ρ the output distributions
A′ρ and Aρ will be the same.

∆(A′,A) < ε
means that the difference in the distributions A′ρ and Aρ should
also be small for every input state ρ.

Moreover, if the device only adds independent noise, that is, if all
the distributions A′ρ are smearings (convolutions) A′ρ = µ ∗ Aρ, of
the distributions Aρ with a fixed probability measure µ, then the
error ∆(A′,A) should just give the ‘size’ of the noise, say, its
standard deviation ∆(µ).

Hence ∆(A′,A) requires a ‘distance’ of probability measures.
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The Wasserstein distance (of order 2)

For Ω = R we take D(x , y) = |x − y |.

- For a probability measure µ and a point measure δy define

D(µ, δy ) =

(∫
D(x , y)2 dµ(x)

) 1
2

=

(∫
|x − y |2 dµ(x),

) 1
2

D(µ) = inf
y∈R

D(µ, δy ) = inf
y

(∫
|x − y |2 dµ(x),

) 1
2

.

- For any two probability measures µ, ν, with a coupling γ ∈ Γ(µ, ν),

Dγ(µ, ν) =

(∫
D(x , y)2 dγ(x , y)

) 1
2

D(µ, ν) = inf
γ∈Γ(µ,ν)

Dγ(µ, ν)



Background Frame Uncertainties Quantifying Errors Covariant case General case NO approaches

The Wasserstein distance (of order 2)

For Ω = R we take D(x , y) = |x − y |.

- For a probability measure µ and a point measure δy define

D(µ, δy ) =

(∫
D(x , y)2 dµ(x)

) 1
2

=

(∫
|x − y |2 dµ(x),

) 1
2

D(µ) = inf
y∈R

D(µ, δy ) = inf
y

(∫
|x − y |2 dµ(x),

) 1
2

.

- For any two probability measures µ, ν, with a coupling γ ∈ Γ(µ, ν),

Dγ(µ, ν) =

(∫
D(x , y)2 dγ(x , y)

) 1
2

D(µ, ν) = inf
γ∈Γ(µ,ν)

Dγ(µ, ν)



Background Frame Uncertainties Quantifying Errors Covariant case General case NO approaches

For any two observables A′ and A and for any state ρ we have the
distance D(A′ρ,Aρ).

We take the worst case w.r.t ρ

D(A′,A) = sup
ρ

D(A′ρ,Aρ)

to represent the distance of the "approximator" A′ from the "target"
observable A.

We say that a bi- (or joint) observable M is an approximate joint
measurement of A and B if the distances D(M1,A) and D(M2,B) are
finite.
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If A is sharp and, say, M1 = µ ∗ A, i.e. (M1)ρ = µ ∗ Aρ for all ρ, for
some µ, then

D(M1,A) = D(µ, δ0)

( For sharp observables we could also restrict to quantify over all
"calibration states", that is states ρ in which A has a fairly sharp value
x , that is, for given ε > 0 the distance D(Aρ, δx ) ≤ ε for some x ∈ R.
The results would be the same. )
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Covariant phase space measurements

They are measurements (with two outcomes) which behave
covariantly under phase space translations, that is, spatial
translations and velocity boosts. Their structure is completely known.

The q- and p-marginals are the unsharp position and momentum with
the Fourier related densities µ, ν:

MQ = M1 = µ ∗Q , MP = M2 = ν ∗ P
µ = QΠσΠ , ν = PΠσΠ , Π the parity operator
σ is the M−defining density operator.
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A covariant phase space observable Mσ serves as an approximate
joint measurement of Q and P:

D(MQ ,Q)D(MP ,P) = D(QΠσΠ, δ0)D(PΠσΠ, δ0)

≥ ∆(QΠσΠ)∆(PΠσΠ) ≥ 1
2
~.

Note: Each Mσ has a quantum optical implementation as a high
amplitude limit of the signal observable measured by an eight-port
homodyne detector.

Could one beat this result by another (phase space) measurement?
No!
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Theorem
Let M be any (phase space) measurement which serves an
approximate joint measurement of position and momentum, that is,
the deviations D(M1,Q) and D(M2,P) are finite. Then

D(M1,Q)D(M2,P) ≥ 1
2
~.

The lower bound is obtained by an appropriate covariant
measurement.

Similar results for qubit observables are obtained in the BLW paper
Heisenberg uncertainty for qubit measurements, arXiv:1311.0837
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What goes wrong in the NO approaches

The experiments which claim the refutation of the Heisenberg
uncertainty relations rely on the noise operator (NO) based notions of
error and disturbance.

In many cases (noncommutative) they are operationally
insignificant, and even wrong measures of error and disturbance.

In those case where they are valid (commutative) they typically
overestimate the (state dependent) error.

A detailed analysis with many examples is given in our forthcoming
paper Noise operators and measures of rms error and disturbance in
quantum mechanics.
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The structure of these notions is the expectation of the squared
difference of two operators, the ‘disturbed’ and ‘undisturbed’ ones,
generically of the form

εNO(A′,A, ρ⊗ σ)2 = 〈(A′ − A)2〉ρ⊗σ.

The quantum mechanical meaning of this number is the second
moment of the statistics obtained when the observable (POM) defined
by the difference operator A′ − A is measured in the state in question.

If the operators A′ and A do not commute, a measurement of the
difference observable has nothing to do with the measurements of its
constituents.

Compare with: H = T + V , T = t(P), V = v(Q).
One DOES NOT measure energy by measuring separately kinetic
energy and potential energy and adding the results. There is NO
VALUE of energy that would correspond to such a result.
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Thanks!
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