timo.peltola@helsinki.fi

Finnish Society for Natural Philosophy, Helsinki, 17 February 2015

Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection -

Timo Peltola

Helsinki Institute of Physics, P.O. Box 64 (Gustaf Hällströmin katu 2) FI-00014 University of Helsinki

Outline:

Introduction: LHC

Compact Muon Solenoid

- Silicon detectors in CMS Tracker
- Tracker upgrade to HL-LHC

R&D of silicon detectors for HL-LHC

- Defect Characterization
- Numerical simulations
- Sensor/material engineering: p-type, thinned ...
- New structures: 3D, active edges, LGAD ...

□ Summary

Large Hadron Collider (LHC)

LHCb-

CERN Prévessin

ATLAS

Compact Muon Solenoid (CMS)

CMS

Timo Peltola - LFS-Presentation - Feb. 17 2015

LHC 27 km

CMS detector: design I

□ CMS magnet: T = 4.65 K doubles magnetic field *B* strength compared to STP □ Iron return yoke: 12-sided, 3-layered iron structure to contain and guide the *B*

CMS detector: design II

Sub-detectors in Compact Muon Solenoid

HCAL: Hadron Calorimeter ECAL: Electromagnetic Calorimeter

DETECTOR TYPES:

Tracking: Semiconductor
 (Si) & gas detectors
 Energy: Scintillators

IN SEARCH OF:

- ✓ Higgs boson, found 2013
- □ Supersymmetric particles
- Micro Quantum Black Holes"
- Gravitons
- Extra dimensions
- Dark matter, etc.

New particles produced at high energy: Likely to decay into particles that are known and detectable or inferred through the missing energy used up in making them

CMS detector: Particle detection I

Transverse slice through CMS detector.

CMS detector: Particle detection II

Timo Peltola - LFS-Presentation - Feb. 17 2015

CMS Tracker: structure II

Tracker inner barrel (TIB) layer and endcap (TEC)

Timo Peltola - LFS-Presentation - Feb. 17 2015

CMS Tracker: Silicon detectors

Silicon detector module made of APV25 and two 6" detectors

Pixel detector design with 18 guard rings

Operating principle of a silicon particle detector

2. Particle generates electron-hole pairs that are collected at electrodes opposite to their charge sign (+/-)

3. By segmenting the collecting electrodes (strips, pixels,...) position information is gained

1. Sensor volume is depleted of charge carriers by engineered doping concentrations & reverse biasing voltage

□ n+/ n⁻ : heavily/lightly doped silicon by donor atoms

PROS (in LHC):

□ Charge is collected in nanoseconds

□ Operation close to room temperature (Si: -20°C, Ge: -200°C)

Cheap material, easy to process

CONS (in LHC):

□ High radiation fluences (>10¹³ cm⁻²) produce defects to silicon crystal \rightarrow eventually signal is lost to noise

CMS Tracker: upgrade to HL-LHC

 \Box Upgrade: LHC \rightarrow High Luminosity LHC (HL-LHC)

- Expected $\int L = 3000 \text{ fb}^{-1}$ after 10 years of operation
- Pseudorapidity coverage from $\eta = 2.5 \rightarrow 4$

□ Challenges for tracker:

- Higher radiation hardness
- \blacksquare High occupancy \rightarrow higher granularity
- Reduce material budget \rightarrow thin sensors (~200 µm)

Estimated fluences in CMS Tracker at HL-LHC after 10 years of operation

Silicon detectors will be exposed to hadron fluences more than 10¹⁶ n_{eq} cm⁻² \rightarrow beyond the performance level of detectors used currently at LHC

R&D mission: development of silicon sensors for HL-LHC

R&D: Defect Characterization

Motivation & Goal: New ways to develop radiation hard Si sensors \rightarrow bridge the gap between the defect analyses and device performances

Radiation induced degradation of the devices is caused by defects

R&D: TCAD simulations

U Why Technology Computer-Aided Design (TCAD) Simulations:

- Electric fields not possible to measure directly
- $\hfill Make predictions from structures & conditions not yet measured <math display="inline">\rightarrow$ provide design parameters to new detectors

□ Working with 'effective defect levels' for simulation of irradiated devices

- Bulk damage approximated by 'effective levels' & surface damage by placing fixed charges Q_f at oxide/silicon interface
- o Concentrations and cross sections of defects tuned to match experimental data

R&D: Simulated CCE

R&D: Measured & Simulated CCE(x)

- Observation: Heavily irradiated strip detectors demonstrate unexpected & significant position dependency of CCE (CCE(x))
- Simulation task: Find out why!
- Solution: Irradiation produces non-uniform distribution of shallow acceptor traps close to detector surface → greater drift distance, higher trapping of signal charge carriers

□ Measured CCE(x): CCE loss between strips ~30%

Preliminary parametrization of the model for fluence range 3e14 – 1.5e15 cm⁻²

3-level model within 2 μm of device surface

Type of defect	Level	$\sigma_{ m e}$	$\sigma_{ m h}$	Concentration
	[eV]	[cm ²]	[cm ²]	[cm ⁻³]
Deep acceptor	<i>E_C</i> - 0.525	1e-14	1e-14	1.189* 0 + 6.454e 13
Deep donor	E_{V} + 0.48	1e-14	1e-14	5.598*Ф - 3.959e14
Shallow acceptor	<i>E_C</i> - 0.40	8e-15	2e-14	14.417* 0 + 3.1675e16

R&D: n⁺ vs. p⁺ readout

n+-electrode readout (natural in p-type silicon):

• Electric field & weighting field maxima are at the same electrode ($E \cdot E_w$ maximum)

Electron collection superior over hole collection:

- o 3 times higher mobility
- o Slightly lower trapping

 Decrease of trapping probability with annealing for electrons

 Drawback: Additional isolation structures needed between n⁺ electrodes

Situation after high level of irradiation:

Timo Peltola - LFS-Presentation - Feb. 17 2015

R&D: Sensors with intrinsic gain - LGAD

□ Charge Multiplication observed after high levels of irradiation

Origin: Irradiation leads to high negative space charge concentration in detector bulk

- \rightarrow increase of the electric field close to n-type strips
- \rightarrow impact ionization

Exploit charge multiplication by:

 \circ Junction engineering to study and control amplification in irradiated devices \rightarrow Detectors with built in gain

Low Gain Avalanche Detector (LGAD): detectors with implemented multiplication layer

□ Under reverse bias, a high E-field is created below n^{++} electrode → impact ionization leads to multiplication for electrons reaching the electrode

□ To be solved: The gain of LGAD reduces significantly after irradiation

R&D: Thin detectors

Thin detector:

- Shorter collection distance → lower trapping probability → better charge collection
- Reduced mass → reduced material budget
- Drawback: Lower signal before very high fluences

Combined with LGAD: Thinner detectors can be produced to give the signal of thick ones

□ Significant improvements in time resolution require thin detectors:

R&D: 3D columnar sensors

3D detector: columns etched into the silicon bulk vertically \rightarrow geometry of 3D sensors decouples charge drift length from the ionization path

 \rightarrow drift length = inter-column spacing, while signal is still proportional to the detector thickness

 \rightarrow higher radiation tolerance

Drawbacks: Complex processing, higher electronics noise, hit position dependent signal size

Sliced TCAD simulation structure of a 3D detector cell

R&D: Active/slim edge sensors

□ Reduced edge width: Method to maximize the sensitive region of the silicon sensors in tracking detectors

Can be applied with any of previous detector designs

 \square Possible to reduce dead space around active area from 1 mm to ~50 μm

Principal design of a detector with active edges

Timo Peltola - LFS-Presentation - Feb. 17 2015

Summary

The CMS detector has 3 main components

Silicon tracker (Si pixels, Si microstrip detectors)

Calorimeters

ECAL (Scintillators, Pb/Si preshower detectors)

o HCAL (Scintillators)

□ Muon chambers (Gaseous detectors)

□ Upgrade to HL-LHC: fluences beyond the performance level of detectors used currently

□ Research & Development of silicon detectors:

Defect characterization of Si

 \circ Consistent lists of defects covering several particles' damage (p, π , n, e, γ)

TCAD simulations

 Simulations able to reproduce pulse shapes, depletion voltage, charge collection, leakage current and surface properties

• Main properties of silicon sensors under investigation:

- **Reduced trapping probability:** p-type silicon, thinned & 3D sensors
- Enhanced charge carrier generation: sensors with intrinsic gain
- Maximized sensitive area: active edge sensors

KIITOS!

Timo Peltola - LFS-Presentation - Feb. 17 2015